DOI QR코드

DOI QR Code

Evaluating the Dosimetric Characteristics of Radiation Therapies according to Head Elevation Angle for Head and Neck Tumors

두 경부 종양 치료 시 거상각도에 따른 치료기법 별 선량특성 평가

  • Cheon, Geum-Seong (Department of Radiation Oncology, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Kang, Seong-Hee (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea) ;
  • Kim, Dong-Su (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea) ;
  • Kim, Tae-Ho (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea) ;
  • Suh, Tae-Suk (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea)
  • 천금성 (가톨릭대학교 서울성모병원 방사선종양학과) ;
  • 강성희 (가톨릭대학교 의과대학 생체의공학연구소 의공학교실) ;
  • 김동수 (가톨릭대학교 의과대학 생체의공학연구소 의공학교실) ;
  • 김태호 (가톨릭대학교 의과대학 생체의공학연구소 의공학교실) ;
  • 서태석 (가톨릭대학교 의과대학 생체의공학연구소 의공학교실)
  • Received : 2016.02.29
  • Accepted : 2016.03.18
  • Published : 2016.03.31

Abstract

Since the head and neck region is densely located with organs at risk (OAR), OAR-sparing is an important issue in the treatment of head and neck cancers. This study-in which different treatment plans were performed varying the head tilt angle on brain tumor patients-investigates the optimal head elevation angle for sparing normal organs (e.g. the hippocampus) and further compares the dosimetric characteristics of different types of radiation equipment. we performed 3D conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and tomotherapy on 10 patients with brain tumors in the frontal lobe while varying the head tilt angle of patients to analyze the dosimetric characteristics of different therapy methods. In each treatment plan, 95% of the tumor volume was irradiated with a dose of 40 Gy in 10 fractions. The step and shoot technique with nine beams was used for IMRT, and the same prescription dose was delivered to the tumor volume for the 3D-CRT and tomotherapy plans. The homogeneity index, conformity index, and normal tissue complication probability (NTCP) were calculated. At a head elevation angle of $30^{\circ}$, conformity of the isodose curve to the target increased on average by 53%, 8%, and 5.4%. In 3D-CRT, the maximum dose received by the brain stem decreased at $15^{\circ}$, $30^{\circ}$, and $40^{\circ}$, compared to that observed at $0^{\circ}$. The NTCP value of the hippocampus observed in each modality was the highest at a head and neck angle of $0^{\circ}$ and the lowest at $30^{\circ}$. This study demonstrates that the elevation of the patients' head tilt angle in radiation therapy improves the target region's homogeneity of dose distribution by increasing the tumor control rate and conformity of the isodose curve to the target. Moreover, the study shows that the elevation of the head tilt angle lowers the NTCP by separating the tumor volume from the normal tissues, which helps spare OARs and reduce the delivered dose to the hippocampus.

두 경부 내부에는 많은 결정장기(organ at risk, OAR)들이 밀집 되어있어 방사선 치료 시 정상조직에 전달되는 선량을 최소화 하는 것은 매우 중요하다. 복잡한 해부학적 구조를 가진 두 경부 종양(Brain tumor)환자 10명을 대상으로 head angle을 기울여 치료계획을 수립 후 해마를 비롯한 정상장기를 보호하기 위한 최적의 두 경부 거상각도(head elevation angle)를 찾고 각도 별 선량특성을 비교 분석하였다. 또한 거상각도에 의한 3차원 입체조형치료(3D-CRT), 세기조절방사선치료(IMRT), 그리고 토모테라피(TomoTherapy)기술을 이용한 장비 별 선량 특성을 비교하였다. 각 치료 계획은 종양체적의 95%에 40 Gy를 10회 분할 조사되도록 하였으며 세기조절방사선치료(IMRT)에서는 step-and-shoot 기법을 이용하여 총 9개의 빔을 사용하여 방사선을 조사하였고, 입체조형치료계획과 토모테라피 치료계획에서는 동일한 처방선량이 종양체적에 전달되도록 하였다. 두 경부 각도/장비별 선량특성을 비교하기 위해 종양체적의 균질성지수(homogeneity index), 균일성지수(conformity index), 정상조직의 흡수선량 및 정상조직합병증확률(NTCP)을 계산하였다. 두 경부각도 $0^{\circ}$와 비교하여 두 경부 각도를 $30^{\circ}$거상 시 종양표적과 iso-dose curve의 일치성은 각 modality의 CI 평균값이 53%, 8%, 그리고 5.4% 향상됨을 확인할 수 있었으며, 3차원 입체조형치료(3D CRT)에서 뇌간(Brain stem)의 경우 $0^{\circ}$와 비교하여 $15^{\circ}$, $30^{\circ}$, 그리고 $40^{\circ}$에서 결정장기에 전달되는 선량이 감소되는 것을 확인할 수 있었다. NTCP의 경우 해마(Hippocampus)에서 각 Modality를 비교 한 결과, 일반적으로 임상에서 사용하는 두 경부 각도 $0^{\circ}$의 NTCP 값이 가장 높았고 $30^{\circ}$거상 시 부작용 발병률이 가장 낮은 결과를 확인할 수 있었다. 본 연구에서는 두 경부 각도를 거상하여 종양의 선량분포곡선(isodose curve)의 일치성과 종양제어율을 향상시켜 선량의 균일성을 확보할 수 있었으며 정상조직 측면에서도 두 경부 각도를 거상한 경우 종양 체적과 인접한 정상조직이 분리되어 OAR과 hippocampus의 흡수선량을 줄여주고, 정상조직 부작용 발병률(NTCP)이 낮아지는 효과를 확인 할 수 있었다.

Keywords

References

  1. Lee SW, Back GM, Yi BY, et al: Preliminary results of a phase I-II study of simultaneous modulated accelerated radiotherapy for nondisseminated nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 65:152-160 (2006) https://doi.org/10.1016/j.ijrobp.2005.10.040
  2. Shiau AC, Lai PL, Liang JA, et al: Dosimetric verification of surface and superficial doses for head and neck IMRT with different PTV shrinkage margins. Med. Phys. 38:1435-1443 (2011) https://doi.org/10.1118/1.3553406
  3. Pezner RD, Archambeau JO: Brain tolerance unit: A method to estimate risk of radiation brain injury for various dose schedules. Int. J. Radiat. Oncol. Biol. Phys. 7:397-402 (1981) https://doi.org/10.1016/0360-3016(81)90115-2
  4. Milano MT, Constine LS, et al: Normal Tissue Tolerance Dose Metrics for Radiation Therapy of Major Organs. Semin. Radiat. Oncol. 17: 131-140 (2007) https://doi.org/10.1016/j.semradonc.2006.11.009
  5. Sahgal A, Barani lJ, Jr JN, et al: Prescription Dose Guideline Based on Physical Criterion for Multiple Metastatic Brain Tumors Treated With Stereotactic Radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 78: 605-608 (2010) https://doi.org/10.1016/j.ijrobp.2009.11.055
  6. Jeraj R, Mackie TR, Balog J, et al: Radiation characteristics of helical tomotherapy. Med. Phys. 31:396-404 (2004) https://doi.org/10.1118/1.1639148
  7. Kan MW, Cheung JY, Leung LH, et al: The accuracy of dose calculations by anisotropic analytical algorithms for stereotactic radiotherapy in nasopharyngeal carcinoma. Phys. Med. Biol. 56:397-413 (2011) https://doi.org/10.1088/0031-9155/56/2/008
  8. Park SH, Park HC, Oh DH, et al: Multi-institutional Comparison of Intensity modulated radiation Therapy (IMRT) Planning strategies and Planning Results for Nasopharyngeal Cancer. J. Korean. Med. Sci, 24, pp. 248-255, 2009. https://doi.org/10.3346/jkms.2009.24.2.248
  9. Mackie TR, Balog J, Ruchala K, et al: Tomotherapy. Semin. Radiat. Oncol. 9, pp. 108-117, (1999) https://doi.org/10.1016/S1053-4296(99)80058-7
  10. Marsh JC, Godbole R, Diaz AZ, et al: Sparing of the hippocampus, limbic circuit and neural stem cell compartment during partial brain radiotherapy for glioma: A dosimetric feasibility study. J. Med. Imag. Radiat. On. 55, 442-449, (2011) https://doi.org/10.1111/j.1754-9485.2011.02282.x
  11. Huang D, Xia P, Akazawa P, et al: Comparison of treatment using intensity-modulated radiotherapy and three-dimensional conformal radiotherapy for paranasal sinus carcinoma, Int. J. Radiat. Oncol. Biol. Phys. 56, No. 1, pp. 158-168, (2003) https://doi.org/10.1016/S0360-3016(03)00080-4
  12. Niroomand RA, Razavi R, Thobejane S, et al: Radiation dose perturbation at tissue-titanium dental interfaces in head and neck cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 34:475-480 (1996) https://doi.org/10.1016/0360-3016(95)02095-0
  13. Choi JY, Won YJ, Park JY, et al: Development of a Thermoplastic Oral Compensator for Improving Dose Uniformity in Radiation Therapy for Head and Neck Cancer. Progress in Medical Physics. 23: 269-278 (2012)
  14. Prokic Vesna, Wiedenmann Nicole, Fels F, et al: Whole Brain Irradiation With Hippocampal Sparing and Dose Escalation on Multiple Brain Metastases: A Planning Study on Treatment Concepts. Int. J. Radiat. Oncol. Biol. Phys. 85, No. 1, pp. 264-270, (2013) https://doi.org/10.1016/j.ijrobp.2012.02.036
  15. Gondi Vinai, Tolakanahalli R, Mehta MP, et al: Hippocampal-Sparing Whole-Brain Radiotherapy: A "How-To" Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 78, No. 4, pp. 1244-1252, (2010) https://doi.org/10.1016/j.ijrobp.2010.01.039
  16. Wang X, Zhang X, Dong L, et al: Effectiveness of noncoplanar IMRT planning using a parallelized multiresolution beam angle optimization method for paranasal sinus carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 63, 594-601 (2005) https://doi.org/10.1016/j.ijrobp.2005.06.006
  17. Siglin J, Champ CE, Vakhnenko Y, et al: Optimizing patient positioning for intensity modulated radiation therapy in hippocampal-sparing whole brain radiation therapy. Pract. Radiat. Oncol. 4, 378-383 (2014) https://doi.org/10.1016/j.prro.2013.11.008
  18. Joseph KJ, Syme A , Small C, et al: A treatment planning study comparing helical tomotherapy with intensity-modulated radiotherapy for the treatment of anal cancer. Radiother. Oncol. 94, 60-66, (2010) https://doi.org/10.1016/j.radonc.2009.10.003
  19. Lee FK, Yip CW, nkie Chun-hung Cheung, et al: Dosimetric difference amongst 3 techniques: TomoTherapy, sliding-window intensity-modulated radiotherapy (IMRT), and RapidArc radiotherapy in the treatment of late-stage nasopharyngeal carcinoma (NPC). Med. Dosim. 39 , 44-49, (2014) https://doi.org/10.1016/j.meddos.2013.09.004
  20. Alber M, Nusslin F: Optimization of intensity modulated radiotherapy under constraints for static and dynamic MLC delivery. Phys. Med. Biol. 46:3229-3239 (2001) https://doi.org/10.1088/0031-9155/46/12/311
  21. Chui H, Rangarajan A: A new point matching algorithm for non-rigid registration. Comp. Vis. Image Und. 89, 114-141, (2003) https://doi.org/10.1016/S1077-3142(03)00009-2
  22. Semenenko VA, Li: Lyman-Kutcher-Burman NTCP model parameters for radiation pneumonitis and xerostomia based on combined analysis of published clinical data. Phys. Med. Biol. 53, 737-55 (2008) https://doi.org/10.1088/0031-9155/53/3/014
  23. G Luxton G, Keall PJ, King CR: A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD). Phys. Med. Biol. 53:23-36 (2008) https://doi.org/10.1088/0031-9155/53/1/002
  24. Kutcher GJ, Burman C, Brewster L, et al: Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int. J. Radiat. Oncol. Biol. Phys. 21:137-146 (1991)
  25. Makrs LB, Yorke ED, Jackson A, et al: Use of Normal Tissue Complication Probability Models in the Clinic. Int. J. Radiat. Oncol. Biol. Phys. 76, S10-S19 (2010) https://doi.org/10.1016/j.ijrobp.2009.07.1754
  26. Emami B, Lyman J, Brown A, et al: Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 21: 109-122 (1991)