• Title/Summary/Keyword: 3D body shape modeling

Search Result 46, Processing Time 0.028 seconds

Digital Elderly Human Body Modeling Part I : Standard Anthropometry and Exterior/Interior Geometries (디지털 고령 인체 모델 구축 Part I : 표준 Anthropometry 및 내외형상)

  • Han, Ji-Won;Choi, Hyung-Yun;Yoon, Kyong-Han;Park, Yo-Han
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.96-104
    • /
    • 2009
  • An anatomically detailed elderly human body model is under development. Using the anthropometric database of domestic nation-wide size survey, SizeKorea, a standard size and shape of 50th %tile elderly was constructed. Through the local recruitment process, a male volunteer with 71 years of age, 163cm of height and 63kg of weight has been selected. The exterior (skin) and interior (skeleton and organ) geometries were acquired from whole body 3D laser scan and various medical images such as CT, X-ray, and Ultrasonic of the volunteer. A particular attention has been paid into the combining process of exterior and interior geometries especially for joint articulation positions since they were measured at different postures (sitting vs. supine). A whole ribcage of PMHS which possessed similar anthropometry and age of standard 50th %tile elderly was prepared and dissected for the precise gauge of cortical rib bone thickness distributions. After completing the morphological construction of elderly human body, the finite element modeling will be processed by meshing elements and assigning mechanical properties to various biological tissues which reflect the aging effect.

The Analysis on the Torso Type Dress Form Developed Through the 3-D Virtual Body Modeling of the Korean Female Fashion Models (국내 여성 패션모델의 3차원 가상인체 모델링을 통한 토르소형 인대 개발과 그 특성 분석)

  • Park, Gin Ah
    • Journal of the Korean Society of Costume
    • /
    • v.65 no.2
    • /
    • pp.157-175
    • /
    • 2015
  • The study was aimed to develop a torso-type dress form representing body features of the female fashion models in Korea. To fulfill this purpose, 5 female fashion models aged between 20 and 26 having the average body measurements of professional fashion models in Korea were selected and their 3-D whole body scanned data were analysed. The 3-D whole body scanning method enabled to generate a virtual female fashion model within the CAD system by measuring the subjects' body shapes and sizes. In addition, the virtual model's body data led the development of a standard female fashion model dress form for the efficient fashion show preparation. In order to manufacture the real dress form for female fashion models, 3-D printing technology was adopted. The consequent results are as follows: (1) the body measurements (unit: cm) of the developed dress form were: biacromion length, 36.0, bust point to bust point, 16.6, front/back interscye lengths, 32.0/33.0, neck point to breast point, 26.0, neck point to breast point to waist line, 41.5, waist front/back lengths, 34.5/38.5, waist to hip length, 24.0, bust circumference, 85.0, underbust circumference, 75.0, waist circumference, 65.0, hip circumference, 92.0. (2) the body measurements differences between the developed and existing dress forms were highlighted with the body measurements of neck point to breast point and waist to hip length. (3) the body shape features of the developed dress form showed that bust, shoulder blade, shoulder slope, abdomen and back waist line to hip line parts were more realistically manufactured.

3D Generic Vertebra Model for Computer Aided Diagnosis (컴퓨터를 이용한 의료 진단용 3차원 척추 제네릭 모델)

  • Lee, Ju-Sung;Baek, Seung-Yeob;Lee, Kun-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.4
    • /
    • pp.297-305
    • /
    • 2010
  • Medical image acquisition techniques such as CT and MRI have disadvantages in that the numerous time and efforts are needed. Furthermore, a great amount of radiation exposure is an inherent proberty of the CT imaging technique, a number of side-effects are expected from such method. To improve such conventional methods, a number of novel methods that can obtain 3D medical images from a few X-ray images, such as algebraic reconstruction technique (ART), have been developed. Such methods deform a generic model of the internal body part and fit them into the X-ray images to obtain the 3D model; the initial shape, therefore, affects the entire fitting process in a great deal. From this fact, we propose a novel method that can generate a 3D vertebraic generic model based on the statistical database of CT scans in this study. Moreover, we also discuss a method to generate patient-tailored generic model using the facts obtained from the statistical analysis. To do so, the mesh topologies of CT-scanned 3D vertebra models are modified to be identical to each other, and the database is constructed based on them. Furthermore, from the results of a statistical analysis on the database, the tendency of shape distribution is characterized, and the modeling parameters are extracted. By using these modeling parameters for generating the patient-tailored generic model, the computational speed and accuracy of ART can greatly be improved. Furthermore, although this study only includes an application to the C1 (Atlas) vertebra, the entire framework of our method can be applied to other body parts generally. Therefore, it is expected that the proposed method can benefit the various medical imaging applications.

A Study on the Optimal Frame Design of Armscye Circumference (겨드랑둘레선의 최적 프레임 생성에 관한 연구)

  • Park, Sun-Mi;Choi, Kueng-Mi;Nam, Yun-Ja;Ryu, Young-Sil;Jun, Jung-Ill
    • Fashion & Textile Research Journal
    • /
    • v.11 no.5
    • /
    • pp.788-798
    • /
    • 2009
  • This study aims to develop a highly reproducible, optimal frame design algorithm using variations in the curvature of armscye circumference, which will provide the basics for remodeling the 3D human body shape with the concept of reverse design used to develop total contents for the apparel industry. 1. The results of the experiment proved that ratio value was significantly efficient than absolute value of curvature variation to extract feature points in the armscye circumference 2. For the shoulder(1st and 2nd quadrant) and front armhole(3rd quadrant) parts of the armscye circumference, frame remodeling with the positive point of inflection led to the completion of a highly reproducible frame. 3. Similarly, even for the rear armhole part(4th quadrant) in the armscye circumference, it was found that frame remodeling using the positive maximum point of inflection resulted in highly reproducible body shape with the maximum point of inflection situated within the range of split angles $305^{\circ}{\sim}330^{\circ}$, while frame remodeling using simultaneously the two largest points of inflection including maximum point of inflection led to highly reproducible body shape with the maximum point of inflection out of the range $305^{\circ}{\sim}330^{\circ}$. 4. Based upon the optimal frame design algorithm developed in this study, section-specific feature points in the armscye circumference were extracted depending on the rate of curvature variation and remodeling with spline curves was conducted. The results indicate a remarkably high reproducibility(98.6%) and suggest that the algorithm developed in this study is suitable for human body modeling.

3-D Body Typing of Korean Adults and its Application to Vehicle Design (자동차 설계를 위한 한국인 3차원 표준 형상의 선정)

  • Hong, Seung-U;Park, Seong-Jun;Jeong, Ui-Seung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.85-94
    • /
    • 2006
  • The purpose of this study is to extract typical body shapes of Korean adults based on the three-dimensional Korean anthropometric data measured through 5th national anthropometric survey and to examine the suitability of the 3-D human shape data for the interior packaging. 36 three-dimensional anthropometric variables related to the design of vehicle interior were considered for the appraisal of typical body shapes. Four major factors were extracted by the factor analysis and factor scores were calculated for all subjects. Typical or standard drivers of Korean adults were selected by the minimum deviation criteria for the four factor scores with respect to 5th, 50th, and 95th percentiles, respectively. Typical drivers of Korean adults were visualized by the CATIA-HUMAN program due to the absence of proper application software for three-dimensionally scanned human body data. There are considerable differences between the anthropometric data of Korean adults and those provided by CATIA-HUMAN program, which shows that the modeling data provided by CATIA-HUMAN should not be directly applied to the ergonomic evaluation for the vehicle design. This suggests the necessity for the development of suitable software for scanned human shape data. It is also expected that the anthropometric data of typical drivers extracted from this study help design package layouts and improve the suitability of ergonomic evaluation for Korean customers.

The Parametric Fashion Design Using Grasshopper -Focused on Skirt Silhouette

  • Jung Min, Kim;Jung Soo, Lee
    • Journal of Fashion Business
    • /
    • v.26 no.6
    • /
    • pp.32-46
    • /
    • 2022
  • The purpose of this study is to explore a three-dimensional (3D) simulation of skirt shape concepts by manipulating circumferences and lengths via parametric design in the fashion design concept stage. This study also intends to propose a modeling method that can judge and transform the shape through immediate parameter adjustment. We looked at cases that utilized parametric design in other fields of fashion design, reviewed and analyzed the variables used in each study, and constructed parameters suitable to implement skirt fashion design. The traditional design elements required for skirt design, namely waist and hip circumferences, were set as variables in this study. The parametric design was developed to generate ideas of two skirt silhouettes (tight and flared) and three lengths (mini, knee-length, and maxi). To apply the skirt design implemented through variables to the actual 3D human shape, the shape data of women in their 20s and 30s were randomly selected from the 5th human data of Size Korea. Skirt design silhouette modeling was performed by adjusting the variable values according to body type. Parametric design has the potential to help develop design ideas in the field of fashion design, considering the method and characteristics of parameters of the variety of variables and rapid modification. Furthermore, if systematic research on variables and options among fashion design elements is conducted, the possibility of converging them into customization or co-design fashion design processes could be confirmed.

Human Limbs Modeling from 3D Scan Data (3차원 스캔 데이터로부터의 인체 팔, 다리 형상 복원)

  • Hyeon, Dae-Eun;Yun, Seung-Hyeon;Kim, Myeong-Su
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • This paper presents a new approach for modeling human limbs shape from 3D scan data. Based on the cylindrical structure of limbs, the overall shape is approximated with a set of ellipsoids through ellipsoid fitting and interpolation of fit-ellipsoids. Then, the smooth domain surface representing the coarse shape is generated as the envelope surface of ellipsoidal sweep, and the fine details are reconstructed by constructing parametric displacement function on the domain surface. For fast calculation, the envelope surface is approximated with ellipse sweep surface, and points on the reconstructed surface are mapped onto the corresponding ellipsoid. We demonstrate the effectiveness of our approach for skeleton-driven body deformation.

  • PDF

Analysis of Female Body Types in Their 20s and 30s for Modeling Korean Standard Avatar (한국인 표준 아바타 모델링을 위한 20-30대 여성 체형 분석)

  • Eun-Hee Hong;Ji-Won Yoon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.4
    • /
    • pp.57-72
    • /
    • 2022
  • This study categorized and analyzed the body types of adult women in their 20s and 30s using 3D human measurement data from the 8th Size Korea, and intended to construct body shape and dimension data necessary for modeling Korean standard avatars. Data analysis considered data from 1302 adult women in their 20s and 30s, and a total of 49 index values, drop values, and angle items were subjected to factor analysis and one-way ANOVA to categorize the body type, and Duncan test to post-verify significant differences by type. As a result of conducting factor analysis, 13 factors were extracted and were categorized into 4 body types. Type 1 is short in the upper torso, long in the lower torso, long in the arms and legs, and has a upright body shape and sagging shoulder. Type 2 is short in the torso, arms and legs, and has large torso flexion and lower body circumference. Type 3 has abdominal obesity with small torso flexion and lower body circumference. Type 4 is a small body bending forward type. For the distribution of body types by age among those in their 20s and 30s, the highest appearance rate was Type 1 and was therefore selected as the represntative body type. The body type information of this study will be used as basic data for developing standard avatars.

3D Human Shape Estimation from a Silhouette Image by using Statistical Human Shape Spaces (통계적 신체 외형 데이터베이스를 활용한 실루엣으로부터의 3차원 인체 외형 예측)

  • Dasol Ahn;Sang Il Park
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.1
    • /
    • pp.13-22
    • /
    • 2023
  • In this paper, we present a method for estimating full 3D shapes from given 2D silhouette images of human bodies. Because the silhouette only consists of the partial information on the true shape, it is an ill-posed problem. To address the problem, we use the statistical human shape space obtained from the existing large 3D human shape database. The method consists of three steps. First, we extract the boundary pixels and their appropriate normal vectors from the input silhouette images. Then, we initialize the correspondences of each pixel to the vertex of the statistically-deformable 3D human model. Finally, we numerically optimize the parameters of the statistical model to fit best to the given silhouettes. The viability and the robustness of the method is demonstrated with various experiments.

Implementation of a Body Weight Distribution Measurement System Applicable to Static Bicycle Fitting (정적 자전거 피팅에 적용 가능한 체중 분포 측정장치의 구현)

  • Yoon, Seon-ho;Kwon, Jun-hyuk;Kim, Cheong-worl
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.242-248
    • /
    • 2018
  • Bicycle fittings have been used to ride bicycles comfortably while minimizing non-traumatic injuries. To analyze the cause of non-traumatic injuries, it is necessary to measure the body weight distribution in various biking positions. In this study, a weight distribution measurement system was implemented by installing five weighable devices on the saddle, both pedals, and both handle grips of a bicycle. To measure the body weight applied through the saddle, the structure of a commercial seat post was modified and a load cell was installed inside. Weighable pedals and handle grips were designed using a 3D modeling program and fabricated by employing a 3D printer. The body weight distribution for ten bicycle riders was measured when the two pedals were aligned horizontally and vertically. Experimental results showed that the body weight distribution varied significantly depending on human body shape, even after the bicycle fitting was completed. The difference between the body weight measured by the proposed system and a commercial scale was less than 3 %.