• Title/Summary/Keyword: 3D body modeling

Search Result 178, Processing Time 0.021 seconds

Suggestion for Shape Measurement and Alloy Element Analysis of Korean Bells (한국종의 형상 및 합금성분 분석을 위한 제안)

  • Ko, Sun-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.428-439
    • /
    • 2011
  • It is well known that the sound characteristics of Korean bell depend on the shape and the alloy constituents. Development of the methods to acquire exact shape data and alloy constituents of the whole body of the bell is very important for the study and systematic management of Korean bells. The practical scanning and modeling methods to get shape data from optical triangulation laser scanners are proposed. The 3D shape data by the proposed methods can be the basis of diverse measurements such as curvature, volume, thickness and the distance between any two points. A nondestructive alloy constituents measuring method which can overcome the limitations of partial data collection and damages to Korean bells is also suggested to get the whole alloy characteristics. Following the developed methods, the data of the shapes and alloy constituents of 18 Korean bells are collected and the errors of existing measurement data for the shape have been corrected.

Optimal Design of an Auto-Leg System for Washing Machines (세탁기용 자동신통저감장치($Auto-Leg^{TM}$)의 최적 설계)

  • Seo, H.S.;Lee, T.H.;Jeon, S.M.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.996-1001
    • /
    • 2006
  • Automatic washing machines have been improved and popularized steadily since the first electric washing machine was produced in the early 1900's. Appliance industry has tried to obtain the performance of washing machine with large capacity, high energy efficiency, low vibration and low noise levels. As the installation peace of a washer becomes closer to the living space, vibration and noise problems become more important challenges. In general, a washing machine has four legs to support its body. Four legs of the washing machine should be attached on a floor. If not so, it may cause severe vibration or walking in the spin-drying process. Unfortunately, the floor of an ordinary house is bumpy in general, and the consumers will not accept bolting washing machines to a foundation; moreover, sometimes they move the location of their washing machines to utility rooms or bath rooms or kitchens and don't care for leveling the legs exactly. In this study, we devise an auto-leg system that prevents the occurrence of abnormal vibration and walking of washing machines. It is simply composed of a spring and a friction damper. Some experiments are implemented to show the dynamic characteristics of the three-dimensional auto-legged washing machine model that is located on the even or uneven ground. A spring parameter is optimized to adjust the length of the auto-leg system automatically up to 10 mm irregularity, and the friction damper is designed to decrease a resonance induced by the spring of the auto-leg system. Some numerical results show that placing the proposed auto-leg system in a washing machine makes good performance with low vibration, as well as low noise, regardless of the unevenness of the floor.

  • PDF

A Review of Computational Phantoms for Quality Assurance in Radiology and Radiotherapy in the Deep-Learning Era

  • Peng, Zhao;Gao, Ning;Wu, Bingzhi;Chen, Zhi;Xu, X. George
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.111-133
    • /
    • 2022
  • The exciting advancement related to the "modeling of digital human" in terms of a computational phantom for radiation dose calculations has to do with the latest hype related to deep learning. The advent of deep learning or artificial intelligence (AI) technology involving convolutional neural networks has brought an unprecedented level of innovation to the field of organ segmentation. In addition, graphics processing units (GPUs) are utilized as boosters for both real-time Monte Carlo simulations and AI-based image segmentation applications. These advancements provide the feasibility of creating three-dimensional (3D) geometric details of the human anatomy from tomographic imaging and performing Monte Carlo radiation transport simulations using increasingly fast and inexpensive computers. This review first introduces the history of three types of computational human phantoms: stylized medical internal radiation dosimetry (MIRD) phantoms, voxelized tomographic phantoms, and boundary representation (BREP) deformable phantoms. Then, the development of a person-specific phantom is demonstrated by introducing AI-based organ autosegmentation technology. Next, a new development in GPU-based Monte Carlo radiation dose calculations is introduced. Examples of applying computational phantoms and a new Monte Carlo code named ARCHER (Accelerated Radiation-transport Computations in Heterogeneous EnviRonments) to problems in radiation protection, imaging, and radiotherapy are presented from research projects performed by students at the Rensselaer Polytechnic Institute (RPI) and University of Science and Technology of China (USTC). Finally, this review discusses challenges and future research opportunities. We found that, owing to the latest computer hardware and AI technology, computational human body models are moving closer to real human anatomy structures for accurate radiation dose calculations.

Numerical Verification of HWAW Method in the Near Field (근거리장에서 HWAW 기법의 수치해석적 검증)

  • Bang, Eun-Seok;Park, Hyung-Choon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.5-17
    • /
    • 2007
  • Various field setup and filtering criteria have been suggested to avoid the near field effects in surface wave methods. Unlike other surface wave methods HWAW method uses the near field component positively. It is possible by using maximum energy point based on time-frequency map and inversion method to consider receiver locations from the source point and body wave component. To verify the HWAW method in the near field numerical study was performed and the wave propagation in the stratified soil media was simulated due to a surface point load. All of five representative soil models were used. The experimental dispersion curves, determined by HWAW method at the various receiver distances in the region of near field, all coincided well with the theoretical dispersion curves determined by 3D forward modeling (Kausel's method). Consequently, it was considered that the HWAW method can provide reliable $V_s$ profiles effectively in the near field.

A Study for the Applicable Bearing-Resistance of Bearing Anchor in the Enlarged-Borehole (지압형 앵커의 지압력 산정에 관한 실험적 연구)

  • Min, Kyoung-Nam;Lee, Jae-Won;Lee, Jung-Gwan;Jung, Chan-Muk
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.261-271
    • /
    • 2014
  • An almost permanent anchor (friction type) is resistant to ground deformation due to the friction between the soil and grout at a fixed length from the anchor body. The purpose of this study is to calculate the force of bearing resistance for a bearing anchor in enlarged boreholes. We conducted analytical and numerical analyses, along with laboratory testing, to find the quantities of bearing resistance prior to grouting in EBA (Enlarged Bearing Anchor) construction. The force of bearing resistance from the analytical method was defined as a function of general borehole diameter, expanded borehole diameter, and soil unconfined compressive strength. We also employed the Flac 3D finite difference numerical modeling code to analyze the bearing resistance of the soil conditions. We then created a laboratory experimental model to measure bearing resistance and carried out a pull-out test. The results of these three analyses are presented here, and a regression analysis was performed between bearing resistance and uniaxial compression strength. The laboratory results yield the strongest bearing resistance, with reinforcement 28.5 times greater than the uniaxial compression strength; the analytical and numerical analyses yielded values of 13.3 and 9.9, respectively. This results means that bearing resistance of laboratory test appears to be affected by skin friction resistance. To improve the reliability of these results, a comparison field study is needed to verify which results (analytical, numerical, or laboratory) best represent field observations.

Design Characteristics of Augmented Reality Digital Fashion (증강 현실 디지털 패션의 디자인 특성)

  • Eunjeong Kim;Seunghee Suh
    • Journal of Fashion Business
    • /
    • v.28 no.4
    • /
    • pp.1-20
    • /
    • 2024
  • The aim of this study was to analyze contemporary sociocultural phenomena and values through characteristics of augmented reality (AR) digital fashion design. The research method included a literature review on the metaverse and augmented reality, combined with a case study using both quantitative analysis through big data text mining and qualitative analysis through constant comparison. Data analysis was conducted using Python-based open-source tools: First, 6,725 data entries were collected from AR digital fashion platforms and brands identified in articles from Vogue and Vogue Business containing keywords of 'augmented reality' and 'digital fashion. Second, text preprocessing involved stop word removal, tokenization, and POS-tagging of nouns and adjectives using the NLTK library. Third, top 50 keywords were extracted through term frequency (TF) and TF-IDF analysis, with results visualized using a word cloud. Fourth, characteristics of products' external design and internal concepts that contained top keywords were classified, with their value examined through repeated comparison. Results indicate that AR digital fashion design has the following characteristics. First, it embodies surreal fantasy through designs that mimic natural biological patterns using 3D scanning and modeling technology. Second, it presents a trans-boundary aspect by utilizing the fluidity of body and space to challenge vertical and discriminatory social structures. Third, it imagines a new future transcending traditional sociocultural concepts by expanding perceptions of space and time based on advanced technological aesthetics. Fourth, it contributes to sustainability by exploring alternatives for the fashion industry in response to climate change and ecological concerns.

A Study of Guide System for Cerebrovascular Intervention (뇌혈관 중재시술 지원 가이드 시스템에 관한 연구)

  • Lee, Sung-Gwon;Jeong, Chang-Won;Yoon, Kwon-Ha;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.101-107
    • /
    • 2016
  • Due to the recent advancement in digital imaging technology, development of intervention equipment has become generalize. Video arbitration procedure is a process to insert a tiny catheter and a guide wire in the body, so in order to enhance the effectiveness and safety of this treatment, the high-quality of x-ray of image should be used. However, the increasing of radiation has become the problem. Therefore, the studies to improve the performance of x-ray detectors are being actively processed. Moreover, this intervention is based on the reference of the angiographic imaging and 3D medical image processing. In this paper, we propose a guidance system to support this intervention. Through this intervention, it can solve the problem of the existing 2D medical images based vessel that has a formation of cerebrovascular disease, and guide the real-time tracking and optimal route to the target lesion by intervention catheter and guide wire tool. As a result, the system was completely composed for medical image acquisition unit and image processing unit as well as a display device. The experimental environment, guide services which are provided by the proposed system Brain Phantom (complete intracranial model with aneurysms, ref H+N-S-A-010) was taken with x-ray and testing. To generate a reference image based on the Laplacian algorithm for the image processing which derived from the cerebral blood vessel model was applied to DICOM by Volume ray casting technique. $A^*$ algorithm was used to provide the catheter with a guide wire tracking path. Finally, the result does show the location of the catheter and guide wire providing in the proposed system especially, it is expected to provide a useful guide for future intervention service.

Stress dissipation characteristics of four implant thread designs evaluated by 3D finite element modeling (4종 임플란트 나사산 디자인의 응력분산 특성에 대한 3차원 유한요소해석 연구)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • Purpose: The aim was to investigate the effect of implant thread designs on the stress dissipation of the implant. Materials and methods: The threads evaluated in this study included the V-shaped, buttress, reverse buttress, and square-shaped threads, which were of the same size (depth). Building four different implant/bone complexes each consisting of an implant with one of the 4 different threads on its cylindrical body ($4.1mm{\times}10mm$), a force of 100 N was applied onto the top of implant abutment at $30^{\circ}$ with the implant axis. In order to simulate different osseointegration stages at the implant/bone interfaces, a nonlinear contact condition was used to simulate immature osseointegration and a bonding condition for mature osseointegration states. Results: Stress distribution pattern around the implant differed depending on the osseointegration states. Stress levels as well as the differences in the stress between the analysis models (with different threads) were higher in the case of the immature osseointegration state. Both the stress levels and the differences between analysis models became lower at the completely osseointegrated state. Stress dissipation characteristics of the V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration. These results indicated that implant thread design may have biomechanical impact on the implant bed bone until the osseointegration process has been finished. Conclusion: The stress dissipation characteristics of V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration.