• Title/Summary/Keyword: 3D baffle

Search Result 50, Processing Time 0.041 seconds

The Effects of Mixer Geometry on Hydraulic Turbulence : Computational Modeling (3-D 전산유체를 이용한 급속혼화조 형상에 따른 난류 유동장 연구)

  • Park, No-Suk;Kim, Sung-Hoon;Park, Heekyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1173-1182
    • /
    • 2000
  • The rapid mixing process has been considered as an important step in water treatment. Since the coagulant dispersion into raw water by rapid mixer can influence on the flocculation and filtration efficiency, many researchers have developed various devices and mixing methodologies. Until now, they focused attention on only coagulant dose, pH. rotating velocity and G value but overlooked the real turbulent flow and mixer geometry in rapid mixer. Therefore this paper questions the significance of turbulent flows in rapid mixer and focuses on the analysis of turbulent fluid in various mixer geometry with CFD(Computational Fluid Dynamics). The results of the jar-tests using various geometries indicate that the turbidity removal rate in a circular jar without baffle is higher than that of a circular with baffle. And the turbidity removal rate in Hudson jar is also founded to be higher than in the circular jar with baffle. The CFD simulation of velocity fields in jar demonstrates that the differences of removal rates among the various geometries are largely due to the formation of the different turbulent fluids fields with different geometries.

  • PDF

FLOW INSTABILITY IN A BAFFLED CHANNEL FLOW (배플이 부착된 채널 유동의 불안정성)

  • Kang, C.;Yang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Flow instability is investigated in a two-dimensional channel with thin baffles placed symmetrically in the vertical direction and periodically in the streamwise dircetion. At low Reynolds numbers, the flow is steady and symmetric. Above a critical Reynolds number, the steady flow undergoes a Hopf bifurcation leading to unsteady periodic flow. As Reynolds number further increases, we observe the onset of secondary instability. At high Reynolds numbers, the two-dimensional periodic flow becomes three dimmensional. To identify the onset of secondary instability, we carry out Floquet stability analysis. We obseved the transition to 3D flow at a Reynolds number of about 125. Also, we computed dominant spanwise wavenumbers near the critical Reynolds number, and visualized vortical structures associated with the most unstable spanwise wave.

NUMERICAL ANALYSIS ON THE HEAT TRANSFER AND FLOW IN THE SHELL AND TUBE HEAT EXCHANGER (Shell & Tube 열교환기 Shell 측 열전달 및 유동에 대한 수치해석)

  • Lee, Sang-Hyuk;Lee, Myung-Sung;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.149-152
    • /
    • 2007
  • The numerical simulations on the heat transfer and flow field were carried out for the improvement of the performance of the shell and tube heat exchanger. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. The present geometry of the heat exchanger causes poor heat transfer since the air inside shell dose not flow through the tube bundle, but around it. The enhancement of the heat transfer can be achieved by the variation of the design factor like the sealing strip located on the top/bottom and middle of the baffle.

  • PDF

Transient Response Analysis of Cylindrical Liquid Fuel-Storage Tank subject to Initial Acceleration (원통형 액체 연료탱크의 초기 가속에 따른 과도응답 해석)

  • Lee, S.Y.;Joo, Y.S.;Kim, K.W.;Cho, J.R.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.475-480
    • /
    • 2000
  • The transient dynamic-response analysis of fuel-storage tanks of flying vehicles accelerating in the vertical direction is achieved with finite element method. A fuel-storage tank is a representative example of the fluid-structure interaction problem, in which structure and fluid media interact strongly. For the accurate analysis of this complicated fluid-structure system, we employed ALE(arbitrary Lagrangian-Eulerian) coupling method. Two types of fuel-storage tanks, one with two baffles and the other without baffle, are considered to examine the effect of baffles. The fuel-storage tank with baffles shows more uniform hydrodynamic pressure distribution, resulting effective stress in structural region and faster convergence from transient to steady states. MSC/Dytran, a commercial FEM software for the 3D coupled dynamic analysis, is used for this analysis.

  • PDF

Experimental and Numerical Investigation for the Effect of Baffles on Heat Transfer Behaviors in a Rectangular Channel (사각채널에서 설치된 배플에 의한 열전달 거동에 관한 실험 및 수치해석)

  • Kang, Ho-Keun;Ahn, Soo-Whan;Bae, Sung-Taek
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.45-46
    • /
    • 2006
  • Experimental and numerical analysis on the heat transfer behaviors and the associated frictional loss in a rectangular channel with two inclined perforated baffles($\;5^{\circ}$) mounted on the bottom plate has been systematically performed. The parametric effects of perforated baffles (3, 6, 9 holes) and flow Reynolds number on heat transfer characteristics of the heated target surface are explored. A combination of two baffles of same overall size was considered and the flow Reynolds number for this study is varied between 28,900 and 61,800. Comparisons of the experimental data with the numerical results by commercial code CFX 5.7 are made. As for the investigation of heat transfer behaviors on local Nusselt number with the two baffles installed at $x/D_h=0.8\;and\;x/D_h=8.0$, it is evident that there exist an optimum perforation density to maximize heat transfer coefficients; i.e., the maximum Nusselt number decreases with increasing number of holes.

  • PDF

Ebert-Fastie spectrograph using the Transformable Reflective Telescope kit

  • Ahn, Hojae;Mo, Gyuchan;Jung, Hyeonwoo;Choi, Junwhan;Kwon, Dou Yoon;Lee, Minseon;Kim, Dohoon;Lee, Sumin;Park, Woojin;Lee, Ho;Park, Kiehyun;Kim, Hyunjong;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.40.4-40.4
    • /
    • 2020
  • Kyung Hee university invented the Transformable Reflective Telescope (TRT) for optical experiment and education. The TRT kit can transform into three optical configurations from Newtonian to Cassegrain to Gregorian by exchanging the secondary mirror. We designed the Ebert-Fastie spectrograph as an extension of the TRT kit. The primary mirror of the TRT kit serves as both collimator and camera lens, and the reflective grating as the dispersing element is placed along the optical axis of the primary mirror. We designed and fabricated the grating holder and the source units using 3D printer. Baffle was also fabricated to suppress the stray light, which was reduced by 83%. The spectrograph can observe the optical wavelength range (4000Å~7000Å). Measured resolving power (R=λ/Δλ) was ~700 with slit width of 0.18mm. The spectrograph is optimized for f/24, and the spectral pixel scale is 0.49Å/pixel with Canon 550D detector. We present the sample spectra of discharged Ne, Ar and Kr gases. The flexible setting and high performance make this spectrograph a useful tool for education and experiment.

  • PDF

Examining Three-Dimensional Flow Characteristics in the Distribution Channel to the Flocculation Basin using CFD (전산유체역학을 이용한 응집지 분배수로의 흐름 해석에 관한 연구)

  • Park, No-Suk;Beak, Heung-Ki;Kim, Jeong-Hyun;Min, Jin-Hui;Shin, Hang-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.500-507
    • /
    • 2004
  • This study was conducted to evaluate the equity of the flow distribution from rapid mixing basin to the flocculation basins. Also, several types of inlet structures of the open channel affecting the flow pattern and distribution trend were studied using Computational Fluid Dynamics (CFD) simulation. For investigating the factual phenomena in distribution channel, we selected a certain domestic water treatment plant with capacity of $361,000m^3/d$. From the measurements of flow discharge, it is investigated that this existing inlet geometry resulted in significant inequitable distribution. The both largest deviations in the basins and rows were over 10%. In order to reduce the these deviation, this study suggested installing a baffle against the influent, and showed the effectiveness which the largest deviation was less than 3%. Also, it was concluded that the existing design method of open channel could be improved by three-dimensional hydrodynamic analysis for optimizing the even flow.

Introduction of Numerical Simulation Techniques for High-Frequency Combustion Instabilities (고주파 연소불안정 예측을 위한 해석기술 개발 사례)

  • Kim, Seong-Ku;Joh, Miok;Han, Sanghoon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.68-77
    • /
    • 2017
  • High-frequency combustion instability results from a feedback coupling between the unsteady heat release rate and the acoustic waves formed resonantly in the combustion chamber. It can be modeled as thermoacoustic problems with various degrees of the assumptions and simplifications. This paper presents numerical analysis of self-excited combustion instabilities in a variable-length lean-premixed combustor and designs of passive control devices such as baffle and acoustic resonators in a framework of 3-D FEM Helmholtz solver. Nonlinear behaviors such as steep-fronted shock waves and a finite amplitude limit cycle are also investigated with a compressible flow simulation technique.

  • PDF

Examinations of Damage Mechanism on the Chuteway Slabs of Spillway under Various Flow Conditions (여수로 방류에 따른 여수로 바닥 슬래브의 손상 메커니즘 검토)

  • Yoo, Hyung Ju;Shin, Dong-Hoon;Lee, Seung Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.251-251
    • /
    • 2021
  • 최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로의 유입량이 설계 당시보다 증가하여 댐의 안전성 확보가 필요하다(감사원, 2003). 이에 건설교통부(2003)는 기후변화와 댐 노후화에 대비하여 치수능력증대사업을 추진하여 댐의 홍수배제능력을 확보하였고, 환경부(2020)에서는 40년 이상 경과된 댐을 대상으로 스마트 안전관리체계 구축을 통한 선제적 보수보강, 성능개선 및 자산관리로 댐의 장수명화를 목적으로 댐의 국가안전대진단을 추진하고 있다. 이에 본 연구에서는 댐 시설(여수로)의 노후도 평가 시 활용 될 수 있는 여수로 표면손상 원인규명에 대하여 3차원 수치모형(FLOW-3D 및 COMSOL Multiphysics)을 통해 검토하고자 한다. 연구대상 댐은 𐩒𐩒댐으로 지형 및 여수로를 구축하였으며, 계획방류량(200년 빈도) 및 최대방류량(PMF) 조건에서 모의를 수행하였다. 수치모의 계산의 정확도 검토를 위하여 Baffle의 설치를 통하여 시간에 따른 유량의 변화를 설계 값과 비교하였고 오차가 1.0% 이내를 만족하는 것을 확인하였다. 여수로 표면손상의 다양한 원인 중 기존연구(USBR, 2019)를 통하여 공동침식(Cavitation Erosion) 및 수력잭킹(Hydraulic Jacking)에 초점을 두었으며 방류조건 별 공동지수(Cavitation Index)산정을 통하여 공동침식 위험 구간을 확인하였다. 이음부의 균열 및 공동으로 인한 표층부 콘크리트의 탈락현상을 가속화시키는 수력잭킹 검토를 위하여 국부모형을 구축하였고 음압력(Negative Pressure), 정체압력(Stagnation Pressure), 양압력(Uplift Pressure)의 분포를 확인하였다. 최종적으로 COMSOL Multiphysics를 통하여 압력분포에 따른 구조해석을 수행하여 폰 미세스(Von Mises) 등가응력 및 변위를 검토하여 콘크리트의 탈락가능성을 확인하였다. 본 연구는 여수로 공동부 및 균열부에서의 손상메커니즘을 확인할 수 있는 기초적인 연구이지만 향후에는 다양한 지형조건 및 흐름조건에서의 압력분포 분석 및 유체-구조물 상호작용(Fluid-Structure Interaction, FSI)모의를 수행한다면 구조물 노후도 및 잔존수명 평가에 필요한 손상한계함수 도출이 가능할 것으로 기대된다.

  • PDF

Membrane bioreactor immersed in the aerated settler to reduce membrane fouling (고도처리용 MBR의 막오염 저감을 위한 막분리 침전조에 대한 연구)

  • Shin, Dong-Whan;Park, Hun-Hwee;Chang, In-Soung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.585-586
    • /
    • 2006
  • 본 연구에서는 고도처리를 위한 BNR 공정에 사용되는 MBR (Membrane Bioreactor)의 막 오염(membrane fouling)을 저감시키기 위해 분리막을 침지시킨 침전조를 상하로 나누어 상부는 폭기조로, 하부는 침전조의 역할을 수행하게 하는 새로운 형태의 막분리 침전조 (aerated settler)의 성능을 평가 하였다. 막분리 침전조는 상하로 구분하기 위해서 baffle을 설치하였다. 파일럿 규모 ($Q=50m^3/d$)의 MBR 공정은 실제 오수를 유입수로 사용하였으며 약 6개월간 운전하였다. 탈질을 위하여 막분리 침전조 하부에서 무산소조로 반송되는 반송수의 DO를 크게 줄어들게 함으로써 무산조에서의 탈질효율이 증가되었다. 처리수의 총 TN 제거율은 75%이었다. 또한 막분리침전조 상 하부의 MLSS 농도 차에 의해 상부에 침지된 막 모듈은 기존의 MBR 공정보다 막 오염 저감 효과가 있어서 세정주기가 증가하였다. 운전 개시 후 4개월째 되는 시점에 TMP가 40cmHg에 도달하여 1회 화학적 약품세정만이 필요하였다.

  • PDF