• 제목/요약/키워드: 3D applications

검색결과 2,717건 처리시간 0.031초

Three-dimensional porous graphene materials for environmental applications

  • Rethinasabapathy, Muruganantham;Kang, Sung-Min;Jang, Sung-Chan;Huh, Yun Suk
    • Carbon letters
    • /
    • 제22권
    • /
    • pp.1-13
    • /
    • 2017
  • Porous materials play a vital role in science and technology. The ability to control their pore structures at the atomic, molecular, and nanometer scales enable interactions with atoms, ions and molecules to occur throughout the bulk of the material, for practical applications. Three-dimensional (3D) porous carbon-based materials (e.g., graphene aerogels/hydrogels, sponges and foams) made of graphene or graphene oxide-based networks have attracted considerable attention because they offer low density, high porosity, large surface area, excellent electrical conductivity and stable mechanical properties. Water pollution and associated environmental issues have become a hot topic in recent years. Rapid industrialization has led to a massive increase in the amount of wastewater that industries discharge into the environment. Water pollution is caused by oil spills, heavy metals, dyes, and organic compounds released by industry, as well as via unpredictable accidents. In addition, water pollution is also caused by radionuclides released by nuclear disasters or leakage. This review presents an overview of the state-of-the-art synthesis methodologies of 3D porous graphene materials and highlights their synthesis for environmental applications. The various synthetic methods used to prepare these 3D materials are discussed, particularly template-free self-assembly methods, and template-directed methods. Some key results are summarized, where 3D graphene materials have been used for the adsorption of dyes, heavy metals, and radioactive materials from polluted environments.

3D printing technology and its applications in the future food industry: a review (3D 프린팅 기술과 미래식품산업의 응용)

  • Yoon, Hyung-Sun;Lee, Mihyun;Jin, Xuanyan;Kim, Su-Jin;Lee, Soyeon;Kim, Yeon-Bi;You, Young-Sun;Rhee, Jin-Kyu
    • Food Science and Industry
    • /
    • 제49권4호
    • /
    • pp.64-69
    • /
    • 2016
  • The potentialities of 3D printing technology are discussed from technical and research-oriented perspectives for industrial manufacturing of a variety of food products. Currently, 3D printing technology has advanced to enable us to process or cook innovative foods. However, food-based materials for 3D printing are still limited in terms of eating qualities, nutritional values and functionality as well as industrial production. Therefore, this uprising issue on alternative food processing techniques especially focused on the exploration of new food materials combined with these 3D printing technologies needs to be re-spotlighted, and then solved to pave the way to this innovative and sensational area of investigation with more accessibility. In this review, previous research work and industrial applications conducted by frontier research groups in this field are covered, then to open discussion for future research on the 3D printing of food.

A Study on AR-based mobile applications for preschoolers (미취학 아동을 대상으로 한 AR 기반 모바일 애플리케이션 연구)

  • Sin, Yeong-Hyeop;Kim, Yeo-min;Seo, Hye-Jin;Kim, Si-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.490-493
    • /
    • 2020
  • Using AR technology, which has recently emerged as an innovative technology, AR mobile application for infants was planned. In the form of combining play and education, children's interest is aroused and access to education to various fields is increased. Unity 3D Engine and Vuforia SDK were mainly used to design Android-based mobile applications.

Localization of hotspots via a lightweight system combining Compton imaging with a 3D lidar camera

  • Mattias Simons;David De Schepper;Eric Demeester;Wouter Schroeyers
    • Nuclear Engineering and Technology
    • /
    • 제56권8호
    • /
    • pp.3188-3198
    • /
    • 2024
  • Efficient and secure decommissioning of nuclear facilities demands advanced technologies. In this context, gamma-ray detection and imaging are crucial in identifying radioactive hotspots and monitoring radiation levels. Our study is dedicated to developing a gamma-ray detection system tailored for integration into robotic platforms for nuclear decommissioning, offering a safe and automated solution for this intricate task and ensuring the safety of human operators by mitigating radiation exposure and streamlining hotspot localization. Our approach integrates a Compton camera based 3D reconstruction algorithm with a single Timepix3 detector. This eliminates the need for a second detector and significantly reduces system weight and cost. Additionally, combining a 3D camera with the setup enhances hotspot visualization and interpretation, rendering it an ideal solution for practical nuclear decommissioning applications. In a proof-of-concept measurement utilizing a 137Cs source, our system accurately localized and visualized the source in 3D with an angular error of 1° and estimated the activity with a 3% relative error. This promising result underscores the system's potential for deployment in real-world decommissioning settings. Future endeavors will expand the technology's applications in authentic decommissioning scenarios and optimize its integration with robotic platforms. The outcomes of our study contribute to heightened safety and accuracy for nuclear decommissioning works through the advancement of cost-effective and efficient gamma-ray detection systems.

Single Feed Compact Wideband Antenna for Wireless Communication Applications

  • Park, Noh-Joon;Kang, Young-Jin
    • Journal of information and communication convergence engineering
    • /
    • 제6권2호
    • /
    • pp.164-168
    • /
    • 2008
  • Wideband terminal and base station is required to serve not only existing 1st and 2nd generation mobile communication systems but also 3rd generation systems. In this paper, we presents a feasibility study on single feed compact wideband antenna for wireless communication applications including GSM (890-960 MHz), GPS (1575 MHz), DCS (1710-1880 MHz), PCS (1880-1990 MHz), UMTS (1900-2200 MHz), ISM (2400-2480 MHz), IMT2000 and satellite DMB bands. The original antenna was designed for partial discharge detection sensor in high voltage diagnostic system. However, we modified the original prototype to achieve shifted down resonant frequency for wideband wireless communication applications. The experimental result shows good return loss characteristics and radiation patterns except for the total gain at each resonant frequency. The maximum measured gain was 2.45 dBi${\sim}$3.18 dBi at 1710 MHz${\sim}$1880 MHz.

Recent Progress in Synthesis of Plate-like ZnO and its Applications: A Review

  • Jang, Eue-Soon
    • Journal of the Korean Ceramic Society
    • /
    • 제54권3호
    • /
    • pp.167-183
    • /
    • 2017
  • Zinc oxide (ZnO) is one of the most versatile semiconductors, and one-dimensional (1D) ZnO nanostructures have attracted significant interest for use in ultraviolet (UV) lasers, photochemical sensors, and photocatalysts, among other applications. It is known that 1D ZnO nanowires can be fabricated readily owing to the anisotropic growth of ZnO along the [0001] direction. However, this type of growth results in a decrease in the surface area of the (0001) plane, which plays a vital role not only in UV lasing but also in the photocatalytic process. Thus, we attempted to synthesize ZnO crystals with an increased polar surface area by controlling the crystal growth process. The purpose of this review is to propose a simple route for the synthesis of plate-like ZnO crystals with highly enhanced polar surfaces and to explore their feasibility for use in UV lasers as well as as a photocatalyst and antibacterial agent. In addition, we highlight the recent progress made in the pilot-scale synthesis of plate-like ZnO crystals for industrial applications.

Monolithic SiGe HBT Feedforward Variable Gain Amplifiers for 5 GHz Applications

  • Kim, Chang-Woo
    • ETRI Journal
    • /
    • 제28권3호
    • /
    • pp.386-388
    • /
    • 2006
  • Monolithic SiGe heterojunction bipolar transistor (HBT) variable gain amplifiers (VGAs) with a feedforward configuration have been newly developed for 5 GHz applications. Two types of the feedforward VGAs have been made: one using a coupled-emitter resistor and the other using an HBT-based current source. At 5.2 GHz, both of the VGAs achieve a dynamic gain-control range of 23 dB with a control-voltage range from 0.4 to 2.6 V. The gain-tuning sensitivity is 90 mV/dB. At $V_{CTRL}$= 2.4 V, the 1 dB compression output power, $P_{1-dB}$, and dc bias current are 0 dBm and 59 mA in a VGA with an emitter resistor and -1.8 dBm and 71mA in a VGA with a constant current source, respectively.

  • PDF

Finding Optimal Paths in Indoor Spaces using 3D GIS (3D-GIS를 이용한 건물 내부공간의 최적경로탐색)

  • Ryu Keun-Won;Jun Chul-Min;Jo Sung-Kil;Lee Sang-Mi
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.387-392
    • /
    • 2006
  • 3D-based information is needed increasingly as well as 2D Information as cities grow and buildings become large and complex, and use of 3D-models is getting attention to handle such problems. However, there are limitations in using 3D-models because most applications and research efforts using them have been for visual analysis. This study presents a method to find optimal paths in indoor spaces as an illustration for using 3D-models in spatial analysis. We modeled rooms, paths and other facilities in a building as individual 3D objects. We made it possible to find paths based on network structure by integrating the vector-based networks of 2D-GIS and 3D-model.

  • PDF

The principles of artificial intelligence and its applications in dentistry

  • Yoohyun Lee;Seung-Ho Ohk
    • International Journal of Oral Biology
    • /
    • 제48권4호
    • /
    • pp.45-49
    • /
    • 2023
  • Digital dentistry has witnessed significant advancements in recent years, driven by extensive research following the introduction of cutting-edge technologies such as CAD/CAM and 3D oral scanners. Until now, 2D images obtained via x-ray or CT scans were critical to detect anomalies and for decision-making. This review describes the main principles and applications of supervised, unsupervised, and reinforcement learning in medical applications. In this context, we present a diverse range of artificial intelligence networks with potential applications in dentistry, accompanied by existing results in the field.

Novel User Interaction Technologies in 3D Display Systems

  • Hopf, Klaus;Chojecki, Paul;Neumann, Frank
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1227-1230
    • /
    • 2007
  • This paper describes recent advances in the R&D work achieved at Fraunhofer HHI (Germany) that are believed to provide key technologies for the development of future human-machine interfaces. The paper focus on the area of vision based interaction technologies that will be one essential component in future three-dimensional display systems.

  • PDF