• Title/Summary/Keyword: 3D Voxel

Search Result 132, Processing Time 0.034 seconds

Construction of Static 3D Ultrasonography Image by Radiation Beam Tracking Method from 1D Array Probe (1차원 배열 탐촉자의 방사빔추적기법을 이용한 정적 3차원 초음파진단영상 구성)

  • Kim, Yong Tae;Doh, Il;Ahn, Bongyoung;Kim, Kwang-Youn
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.128-133
    • /
    • 2015
  • This paper describes the construction of a static 3D ultrasonography image by tracking the radiation beam position during the handy operation of a 1D array probe to enable point-of-care use. The theoretical model of the transformation from the translational and rotational information of the sensor mounted on the probe to the reference Cartesian coordinate system was given. The signal amplification and serial communication interface module was made using a commercially available sensor. A test phantom was also made using silicone putty in a donut shape. During the movement of the hand-held probe, B-mode movie and sensor signals were recorded. B-mode images were periodically selected from the movie, and the gray levels of the pixels for each image were converted to the gray levels of 3D voxels. 3D and 2D images of arbitrary cross-section of the B-mode type were also constructed from the voxel data, and agreed well with the shape of the test phantom.

3D Region Growing Algorithm based on Eigenvalue of Hessian matrix for Extraction of blood vessels (혈관추출을 위한 Hessian 행렬 고유치 기반 3 차원 영역확장 알고리즘)

  • Lee, Yu-Bu;Choi, Yoo-Joo;Kim, Myoung-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1641-1644
    • /
    • 2004
  • 3차원 볼륨데이터에서 분할 대상영역의 밝기 값이 다양하면서 밝기 값이 유사한 영역과 인접한 경우 3차원 영역확장(region growing) 방법을 사용하여 영역을 분할하기 위해서는 영역확장의 중요한 요인인 동질성 기준 값의 적절한 선택이 요구된다. 본 논문에서는 영역 복셀(voxel)의 1차 미분 값의 크기인 기울기 크기(gradient magnitude)만으로 영역의 경계를 찾기가 쉽지않은 대상의 분할을 위해 볼륨데이터의 지역적인 밝기 값의 변화의 특징을 고려하면서 분할 대상영역의 복셀의 2차 미분(second partial derivation)을 행렬의 요소(element)로 갖는 Hessian 행렬의 고유치(eigenvalue)를 영역확장의 문턱치 결정에 이용하였다. 제안한 알고리즘은 3차원 영역확장의 결과에 가장 큰 영향을 미치는 적절한 문턱치의 선택으로 대상영역의 분할을 성공적으로 수행하여 3차원 영역확장의 단점을 보완하였다.

  • PDF

Generating a Rectangular Net from Unorganized Point Cloud Data Using an Implicit Surface Scheme (음 함수 곡면기법을 이용한 임의의 점 군 데이터로부터의 사각망 생성)

  • Yoo, D.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.274-282
    • /
    • 2007
  • In this paper, a method of constructing a rectangular net from unorganized point cloud data is presented. In the method an implicit surface that fits the given point data is generated by using principal component analysis(PCA) and adaptive domain decomposition method(ADDM). Then a complete and quality rectangular net can be obtained by extracting voxel data from the implicit surface and projecting exterior faces of extracted voxels onto the implicit surface. The main advantage of the proposed method is that a quality rectangular net can be extracted from randomly scattered 3D points only without any further information. Furthermore the results of this works can be used to obtain many useful information including a slicing data, a solid STL model and a NURBS surface model in many areas involved in treatment of large amount of point data by proper processing of implicit surface and rectangular net generated previously.

Fast Grid-Based Refine Segmentation on V-PCC encoder (V-PCC 부호화기의 그리드 기반 세그먼트 정제 고속화)

  • Kim, Yura;Kim, Yong-Hwan
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.265-268
    • /
    • 2022
  • Video-based Point Cloud Compression(V-PCC) 부호화기의 세그먼트 정제(Refining segmentation) 과정은 3D 세그먼트를 2D 패치 데이터로 효율적으로 변환하기 위한 V-PCC 부호화기의 핵심 파트이지만, 많은 연산량을 필요로 하는 모듈이다. 때문에 이미 TMC2 에 Fast Grid-based refine segmentation 과정이 구현되어 있으나, 아직도 세그먼트 정제 기술의 연산량은 매우 높은 편이다. 본 논문에서는 현재 TMC2 에 구현되어 있는 Fast Gridbased Refine Segmentation 을 살펴보고, 복셀(Voxel) 타입에 따른 특성에 맞춰 두 가지 조건을 추가하는 고속화 알고리즘을 제안한다. 실험 결과 압축성능(BD-BR)은 TMC2 와 거의 차이를 보이지 않았지만, 모듈 단위 평균 10% 연산량이 절감되는 것을 확인하였다.

  • PDF

Development of 3D Image Processing Software using EMD for Ultrasonic NDE (EMD를 이용한 초음파 비파괴 평가용 3차원 영상처리 소프트웨어 개발)

  • Nam, Myung-Woo;Lee, Young-Seock;Yang, Ok-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1569-1573
    • /
    • 2008
  • This paper describes a development of Ultrasonic NDE software to analyze steam generator of nuclear power plant. The developed software includes classical analysis method such as A, B, C and D-scan images. And it can analyze the detected internal cracks using 3D image processing method. To do such, we obtain raw data from specimens of real pipeline of power plants, and get the envelope signal using Empirical Mode Decomposition from obtained ultrasonic 1-dimensional data. The reconstructed 3D crack images offer useful information about the location, shape and size of cracks, even if there is no special 2D image analysis technique. The developed analysis software is applied to specimens containing various cracks with known dimensions. The results of application showed that the developed software provided accurate and enhanced 2D images and reconstructed 3D image of cracks.

Virtual Navigation of Blood Vessels using 3D Curve-Skeletons (3차원 골격곡선을 이용한 가상혈관 탐색 방안)

  • Park, Sang-Jin;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.89-99
    • /
    • 2017
  • In order to make a virtual endoscopy system effective for exploring the interior of the 3D model of a human organ, it is necessary to generate an accurate navigation path located inside the 3D model and to obtain consistent camera position and pose estimation along the path. In this paper, we propose an approach to virtual navigation of blood vessels, which makes proper use of orthogonal contours and skeleton curves. The approach generates the orthogonal contours and the skeleton curves from the 3D mesh model and its voxel model, all of which represent the blood vessels. For a navigation zone specified by two nodes on the skeleton curves, it computes the shortest path between the two nodes, estimates the positions and poses of a virtual camera at the nodes in the navigation zone, and interpolates the positions and poses to make the camera move smoothly along the path. In addition to keyboard and mouse input, intuitive hand gestures determined by the Leap Motion SDK are used as user interface for virtual navigation of the blood vessels. The proposed approach provides easy and accurate means for the user to examine the interior of 3D blood vessels without any collisions between the camera and their surface. With a simple user study, we present illustrative examples of applying the approach to 3D mesh models of various blood vessels in order to show its quality and usefulness.

Accuracy of virtual models in the assessment of maxillary defects

  • Kamburoglu, Kivanc;Kursun, Sebnem;Kilic, Cenk;Ozen, Tuncer
    • Imaging Science in Dentistry
    • /
    • v.45 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • Purpose: This study aimed to assess the reliability of measurements performed on three-dimensional (3D) virtual models of maxillary defects obtained using cone-beam computed tomography (CBCT) and 3D optical scanning. Materials and Methods: Mechanical cavities simulating maxillary defects were prepared on the hard palate of nine cadavers. Images were obtained using a CBCT unit at three different fields-of-views (FOVs) and voxel sizes: 1) $60{\times}60mm$ FOV, $0.125mm^3$ ($FOV_{60}$); 2) $80{\times}80mm$ FOV, $0.160mm^3$ ($FOV_{80}$); and 3) $100{\times}100mm$ FOV, $0.250mm^3$ ($FOV_{100}$). Superimposition of the images was performed using software called VRMesh Design. Automated volume measurements were conducted, and differences between surfaces were demonstrated. Silicon impressions obtained from the defects were also scanned with a 3D optical scanner. Virtual models obtained using VRMesh Design were compared with impressions obtained by scanning silicon models. Gold standard volumes of the impression models were then compared with CBCT and 3D scanner measurements. Further, the general linear model was used, and the significance was set to p=0.05. Results: A comparison of the results obtained by the observers and methods revealed the p values to be smaller than 0.05, suggesting that the measurement variations were caused by both methods and observers along with the different cadaver specimens used. Further, the 3D scanner measurements were closer to the gold standard measurements when compared to the CBCT measurements. Conclusion: In the assessment of artificially created maxillary defects, the 3D scanner measurements were more accurate than the CBCT measurements.

Improved Sampling Method For Volume Rendering (Volume Rendering를 위한 향상된 Sampling 방법)

  • 박재영;이병일;최흥국
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.213-216
    • /
    • 2000
  • 본 논문에서는 volume rendering 기법을 이용하여 2차원 MRI 영상들을 합성하여 3차원 영상 만들 때 보다 해상도를 높이기 위한 개선된 sampling방법을 소개한다 2차원 슬라이스 영상들이 3차원으로 재구성할 때 voxel 기반으로 렌더링을 하기 때문에 오브젝트의 내부 영역까지도 볼 수 있는 것이 volume rendering의 가장 큰 장점이다. 따라서 영상을 재구성하는 과정에서 보다 향상된 interpolation을 적용시켜서 공간 해상도를 향상시키면 보다 명확하게 오브젝트 내부 정보를 살펴 볼 수 있다. 본 논문에서는 nearest neighbor 이나 linear 같은 interpolation으로 sampling한 방법보다 cubic interpolation을 3차원 공간에서 적용 시켜서 보다 resampling이 잘 되도록 하여 해상도를 향상시켜 보았다. 이렇게 향상된 Interpolation 적용시켜서 렌더링할 때 얼마나 오브젝트 내부 영역이 잘 가시화가 되었는지 transfer function을 적용시켜서 오브젝트 내부 정보를 렌더링 해보았고, 임의의 축으로 오브젝트을 잘라서 2D 단면 영상으로 출력해 보았다. 보다 향상된 interpolation을 적용시켜서 resampling을 하면 영상 해상도가 개선되었음을 볼 수 있었다.

  • PDF

VR Visualization of Casting Flow Simulation (주물 유동해석의 VR 가시화)

  • Park, Ji-Young;Suh, Ji-Hyun;Kim, Sung-Hee;Kim, Myoung-Hee
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.813-816
    • /
    • 2008
  • In this research we present a method to reconstruct the casting flow simulation result as a 3D model and visualize it on a VR display. First, numerical analysis of heat flow is performed using an existing commercial CAE simulation software. In this process the shape of the original design model is approximated to a regular rectangular grid. The filling ratio and temperature of each voxel are recorded iteratively by predefined number of steps starting from pouring the melted metal into a mold until it is entirely filled. Next we reconstruct the casting by voxels using the simulation result as an input. The color of voxel is determined by mapping the colors to temperature and filling ratio at each step as the flow proceeds. The reconstructed model is visualized on the Projection Table which is one of horizontal-type VR display. It provides active stereoscopic images.

  • PDF