• Title/Summary/Keyword: 3D Voxel

Search Result 132, Processing Time 0.027 seconds

An Optimal Thresholding Method for the Voxel Coloring in the 3D Shape Reconstruction

  • Ye, Soo-Young;Kim, Hyo-Sung;Yi, Young-Youl;Nam, Ki-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1695-1700
    • /
    • 2005
  • In this paper, we propose an optimal thresholding method for the voxel coloring in the reconstruction of a 3D shape. Our purposed method is a new approach to resolve the trade-off error of the threshold value on determining the photo-consistency in the conventional method. Optimal thresholding value is decided to compare the surface voxel of photo-consistency with inside voxel on the optic ray of the center camera. As iterating the process of the voxels, the threshold value is approached to the optimal value for the individual surface voxel. And also, graph cut method is reduced to the surface noise on eliminating neighboring voxel. To verify the proposed algorithm, we simulated in the virtual and real environment. It is advantaged to speed up and accuracy of a 3D face reconstruction by applying the methods of optimal threshold and graph cut as compare with conventional algorithms.

  • PDF

Implementation of Photorealistic 3D Object Reconstruction Using Voxel Coloring (Voxel Coloring을 이용한 3D 오브젝트 모델링)

  • Adipranata, Rudy;Yang, Hwang-Kyu;Yun, Tae-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.527-530
    • /
    • 2003
  • In this paper, we implemented the voxel coloring method to reconstruct 3D object from synthetic input Images. Then compare the result between using standard voxel coloring and using coarse-to-fine method. We compared using different voxel space site to see the difference of time processing and the result of 3D object. Photorealistic 3D object reconstruction is a challenging problem in computer graphics. Vexel coloring considered the reconstruction problem as a color reconstruction problem, instead of shape reconstruction problem. This method works by discretizing scene space into yokels, then traversed and colored those in special order. Also there is an extension of voxel coloring method far decreasing the amount of processing time called coarse-to-fine method. This. method works using low resolution instead of high resolution as input and after processing finish, apply some kind of search strategy.

  • PDF

A Study on the Voxel Mesh Technique for Finite Element Modeling of Human Bone (인체 골(bone)의 유한요소 모델링을 위한 VOXEL MESH 기법에 관한 연구)

  • 변창환;오택열;백승민;채경덕
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1081-1084
    • /
    • 2002
  • In this study, we perform 3-D reconstruction of human proximal femur from DICOM files by using voxel mesh algorithm. After 3-D reconstruction, the model converted to Finite Element model which developed for automatically making not only 3-D geometrical model but also FE model from medical image dataset. During this job, trabecular pattern, one of characteristic of human bone can be added to the model by means of giving it's own elastic property calculated from intensity in CT scanned image to the each voxel. And then another model is made from same image dataset which have two material properties - one corresponds to cortical bone, another to trabecular bone. Finally, validity of voxel mesh technique is verified through comparing results of FE analysis, free vibration and stress analysis.

  • PDF

A New Voxel Coloring Method for 3D Shape Reconstruction (3차원 형상 재구성을 위한 새로운 복셀 칼라링 기법)

  • Ye Sooyoung;Kim Hyosung;Joo Jaeheum;Nam Kigon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.6
    • /
    • pp.93-100
    • /
    • 2005
  • We propose an optimal thresholding method for the voxel coloring in the reconstruction of a 3D shape. Our purposed method is a new approach to resolve the trade-off error of the threshold value on determining the photo-consistency in the conventional method. Optimal thresholding value is decided to compare the photo-consistency of a surface with inside voxel on the optic ray of the center camera. As iterating the process of the vokels, the threshold is approached to the optimal value for the individual surface voxel. And also, graph cut method is reduced to the surface noise on eliminating neighboring voxel. To verify the proposed algorithm, we simulated in the virtual and real environment. It is advantaged to speed up and accuracy of a 3D face reconstruction by applying the methods of optimal threshold and graph as compare with conventional algorithms.

AR based ornament design system for 3D printing

  • Aoki, Hiroshi;Mitanin, Jun;Kanamori, Yoshihiro;Fukui, Yukio
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.47-54
    • /
    • 2015
  • In recent years, 3D printers have become popular as a means of outputting geometries designed on CAD or 3D graphics systems. However, the complex user interfaces of standard 3D software can make it difficult for ordinary consumers to design their own objects. Furthermore, models designed on 3D graphics software often have geometrical problems that make them impossible to output on a 3D printer. We propose a novel AR (augmented reality) 3D modeling system with an air-spray like interface. We also propose a new data structure (octet voxel) for representing designed models in such a way that the model is guaranteed to be a complete solid. The target shape is based on a regular polyhedron, and the octet voxel representation is suitable for designing geometrical objects having the same symmetries as the base regular polyhedron. Finally, we conducted a user test and confirmed that users can intuitively design their own ornaments in a short time with a simple user interface.

Visualization Method for Boundary Region Using Transfer Function in 3D Data Set (3D Data Set에서 Transfer Function를 이용한 경계 영역의 가시화 방법)

  • 박재영;이병일;최현주;최흥국
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.04a
    • /
    • pp.425-428
    • /
    • 2000
  • 2차원 슬라이스 영상으로부터 volume rendered 이미지를 생성하기 위해서는 2차원 영상의 pixel 데이터를 voxel 기반으로 재구성해야 한다. 영상을 재구성하면서 생성되는 voxel value 는 3차원 영상을 2차원 화면으로 원근 투영할 때 최종 픽셀값을 결정하는 기본 요소가 된다. 따라서 본 논문에서는 조합되는 voxel value를 결정하는 Transfer Function를 이용한 intensity 와 gradient magnitude 의조작을 통하여 최종 3차원 이미지에서 오브젝트의 surface 뿐만 아니라 내부의 서로 다른 조직끼리의 경계 영역을 가시화하여 보았다.

  • PDF

Fabrication of Three-Dimensional Curved Microstructures by Two-Photon Polymerization Employing Multi-Exposure Voxel Matrix Scanning Method (다중조사 복셀 매트릭스 스캐닝법을 이용한 이광자 중합에 의한 마이크로 3차원 곡면형상 제작)

  • Lim, Tae-Woo;Park, Sang-Hu;Yang, Dong-Yol;Kong, Hong-Jin;Lee, Kwang-Sup
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.418-421
    • /
    • 2005
  • Three-dimensional (3D) microfabrication process using two-photon polymerization (TPP) is developed to fabricate the curved microstructures in a layer, which can be applied potentially to optical MEMS, nano/micro-devices, etc. A 3D curved structure can be expressed using the same height-contours that are defined by symbolic colors which consist of 14 colors. Then, the designed bitmap figure is transformed into a multi-exposure voxel matrix (MVM). In this work a multi-exposure voxel matrix scanning method is used to generate various heights of voxels according to each laser exposure time that is assigned to the symbolic colors. An objective lens with a numerical aperture of 1.25 is employed to enlarge the variation of a voxel height in the range of 1.2 to 6.4 um which can be controlled easily using the various exposure time. Though this work some 3D curved micro-shapes are fabricated directly to demonstrate the usefulness of the process without a laminating process that is generally required in a micro-stereolithography process.

A Study on Graphic Program for 3D Image Display System (실시간3차원 그래픽 프로그램 개발에 관한 연구)

  • 배성찬;권승탁;양연식
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.227-230
    • /
    • 2001
  • In this paper, We present a 3D image data for ocular refina. This 3D display techniques are used voxel(cuboid) projection. Voxel is 3D reconstruction method of the pixel. In this paper, 3D image display system is constructed under PC environment and programed based on modular programming by using Visual C++. The hole procedures are composed of data preparation, 3D Display over transformation and scaling.

  • PDF

Estimation of Single Vegetation Volume Using 3D Point Cloud-based Alpha Shape and Voxel (3차원 포인트 클라우드 기반 Alpha Shape와 Voxel을 활용한 단일 식생 부피 산정)

  • Jang, Eun-kyung;Ahn, Myeonghui
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.204-211
    • /
    • 2021
  • In this study, information on vegetation was collected using a point cloud through a 3-D Terrestrial Lidar Scanner, and the physical shape was analyzed by reconfiguring the object based on the refined data. Each filtering step of the raw data was optimized, and the reference volume and the estimated results using the Alpha Shape and Voxel techniques were compared. As a result of the analysis, when the volume was calculated by applying the Alpha Shape, it was overestimated than reference volume regardless of data filtering. In addition, the Voxel method to be the most similar to the reference volume after the 8th filtering, and as the filtering proceeded, it was underestimated. Therefore, when re-implementing an object using a point cloud, internal voids due to the complex shape of the target object must be considered, and it is necessary to pay attention to the filtering process for optimal data analyzed in the filtering process.

Geometrical Featured Voxel Based Urban Structure Recognition and 3-D Mapping for Unmanned Ground Vehicle (무인 자동차를 위한 기하학적 특징 복셀을 이용하는 도시 환경의 구조물 인식 및 3차원 맵 생성 방법)

  • Choe, Yun-Geun;Shim, In-Wook;Ahn, Seung-Uk;Chung, Myung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.436-443
    • /
    • 2011
  • Recognition of structures in urban environments is a fundamental ability for unmanned ground vehicles. In this paper we propose the geometrical featured voxel which has not only 3-D coordinates but also the type of geometrical properties of point cloud. Instead of dealing with a huge amount of point cloud collected by range sensors in urban, the proposed voxel can efficiently represent and save 3-D urban structures without loss of geometrical properties. We also provide an urban structure classification algorithm by using the proposed voxel and machine learning techniques. The proposed method enables to recognize urban environments around unmanned ground vehicles quickly. In order to evaluate an ability of the proposed map representation and the urban structure classification algorithm, our vehicle equipped with the sensor system collected range data and pose data in campus and experimental results have been shown in this paper.