• Title/Summary/Keyword: 3D Visualization Software

Search Result 102, Processing Time 0.03 seconds

Optimized Construction and Visualization of GPU-based Adaptive and Continuous Signed Distance Field, and Its Applications (GPU기반 적응형 및 연속적인 부호 거리장의 최적화된 구성과 시각화, 그리고 그 응용 사례)

  • Moon, Seong-Hyeok;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.655-658
    • /
    • 2021
  • 본 논문에서는 GPU 아키텍처를 이용하여 적응형 부호 거리장을 최적화하여 빠르게 구축하고 시각화 할 수 있는 방법에 대해 제안한다. 쿼드트리를 효율적으로 GPU 메모리로 전달하고, 이를 활용하여 삼각형에 대해 유클리디안 거리를 각 스레드 별로 병렬처리하여 최단 거리를 찾는다. 이 과정에서 GPU를 사용하여 삼각형으로 구성된 3D 메쉬로부터 빠르게 적응형 부호 거리장을 계산할 수 있는 최적화 기법과 절단면 보기, 특정 위치의 값 조회, 실시간 레이트레이싱 및 충돌처리 작업을 빠르고 효율적으로 수행할 수 있는지를 보여준다. 또한, 제안하는 프레임워크를 활용하면 하이 폴리곤 메쉬도 1초 내외로 부호 거리장을 계산할 수 있기 때문에 강체뿐만 아니라 변형체에도 충분히 활용될 수 있다.

  • PDF

GUI construction for 3D visualization of ocean hydrodynamic models (해수유동모델의 3차원 가시화를 위한 GUI 구축)

  • Lee, Won-Chan;Park, Sung-Eun;Hong, Sok-Jin;Oh, Hyun-Taik;Jung, Rea-Hong;Koo, Jun-Ho
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.213-215
    • /
    • 2006
  • This study presents an application of GIS technologies to construct the graphic user interface for 3-dimensional exhibition of the results obtained by ocean hydrodynamic model. In coastal management studies, GIS provide a receptacle for scattered data from diverse sources and an improvement of the 3D visualization of such data. Within the frame of a GIS a variety of analytical, statistical and modeling tools can be applied to transform data and make them suitable for a given application. A 3D hydrodynamic model was driven by time-dependent external forcing such as tide, wind velocity, temperature, salinity, river discharge, and solar radiation under the open boundary condition. The Jinhae Bay was selected as a case study. Here, we have used GeoMania v2.5 GIS software and its 3D Analyst extension module to visualize hydrodynamic model result that were simulated around the Jinhae Bay.

  • PDF

Development of Remote Control Module on a 3D Universe Visualization (3D 우주환경 가시화 도구 원격 제어 모듈 개발)

  • Han, Sang-Hyuck;Koo, Cheol-Hea;Lee, Hoon-Hee;Moon, Sung-Tae
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.120-127
    • /
    • 2013
  • Recently, In Aerospace area the interest of open source software is increasing. One of examples is celestia that is used for visualizing space environment with 3D. Celestia that is open source software has many advantages. First is very easy to use, second is that it can extend new features easily with script language. It is very useful to extend with other systems. But, celestia has a few of remote control features from remote site. In this paper I describe design and implementation of remote control module using UDP communication protocol between celestia and GenSim that is satellite simulation software developed by KARI and describe the problem and solution items are found during development duration.

Implementation of an Architecture for the Dismantling Digital Mock-up System (해체 디지털목업시스템 아키텍쳐 구현)

  • Park Hee-Seoung;Kim Sung-Kyun;Lee Kune-Woo;Oh Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.237-247
    • /
    • 2005
  • It is necessary to forecast the various dismantling activities prior to dismantling nuclear facilities by using various software instead of a physical mock-up system because the dismantling in a contaminated with radioactivity cause the results of an unexpected situation. The component that needs to develop a dismantling mock-up system was examined. There are many component systems such as a decommissioning database system,3D dosimetric mapping that represents a distribution of a radionuclide contamination, a component of modeling for nuclear facility and devices include the decontamination and decommissioning. The research of software architecture about these components was carried out because these component systems that have been independently doesn't describe not only to visual an activities of Decontamination and Decommissioning(D&D) but also to evaluate it. The result was established an architecture that consist of an visualization module which could be visualized an D&D activities and a simulation module which can be evaluated a dismantling schedule and decommissioning cost.

  • PDF

Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging (Invited paper)

  • Kus, Arkadiusz;Krauze, Wojciech;Makowski, Piotr L.;Kujawinska, Malgorzata
    • ETRI Journal
    • /
    • v.41 no.1
    • /
    • pp.61-72
    • /
    • 2019
  • In this paper, we demonstrate the current concepts in holographic tomography (HT) realized within limited angular range with illumination scanning. The presented solutions are based on the work performed at Warsaw University of Technology in Poland and put in context with the state of the art in HT. Along with the theoretical framework for HT, the optimum reconstruction process and data visualization are described in detail. The paper is concluded with the description of hardware configuration and the visualization of tomographic reconstruction, which is calculated using a provided processing path.

Augmented Reality to Localize Individual Organ in Surgical Procedure

  • Lee, Dongheon;Yi, Jin Wook;Hong, Jeeyoung;Chai, Young Jun;Kim, Hee Chan;Kong, Hyoun-Joong
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.394-401
    • /
    • 2018
  • Objectives: Augmented reality (AR) technology has become rapidly available and is suitable for various medical applications since it can provide effective visualization of intricate anatomical structures inside the human body. This paper describes the procedure to develop an AR app with Unity3D and Vuforia software development kit and publish it to a smartphone for the localization of critical tissues or organs that cannot be seen easily by the naked eye during surgery. Methods: In this study, Vuforia version 6.5 integrated with the Unity Editor was installed on a desktop computer and configured to develop the Android AR app for the visualization of internal organs. Three-dimensional segmented human organs were extracted from a computerized tomography file using Seg3D software, and overlaid on a target body surface through the developed app with an artificial marker. Results: To aid beginners in using the AR technology for medical applications, a 3D model of the thyroid and surrounding structures was created from a thyroid cancer patient's DICOM file, and was visualized on the neck of a medical training mannequin through the developed AR app. The individual organs, including the thyroid, trachea, carotid artery, jugular vein, and esophagus were localized by the surgeon's Android smartphone. Conclusions: Vuforia software can help even researchers, students, or surgeons who do not possess computer vision expertise to easily develop an AR app in a user-friendly manner and use it to visualize and localize critical internal organs without incision. It could allow AR technology to be extensively utilized for various medical applications.

Development of 3-D viewer for indoor location tracking system using wireless sensor network

  • Yang, Chi-Shian;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.110-114
    • /
    • 2007
  • In this paper we present 3-D Navigation View, a three-dimensional visualization of indoor environment which serves as an intuitive and unified user interface for our developed indoor location tracking system via Virtual Reality Modeling Language (VRML) in web environment. The extracted user's spatial information from indoor location tracking system was further processed to facilitate the location indication in virtual 3-D indoor environment based on his location in physical world. External Authoring Interface (EAI) provided by VRML enables the integration of interactive 3-D graphics into web and direct communication with the encapsulated Java applet to update position and viewpoint of user periodically in 3-D indoor environment. As any web browser with VRML viewer plug-in is able to run the platform independent 3-D Navigation View, specialized and expensive hardware or software can be disregarded.

3D Visualization of Satellite Remote-Sensing Images Using an Array DBMS (Array DBMS을 이용한 위성원격탐사 영상의 3차원 시각화)

  • Choi, Jong Hyeok;Lee, Jong Yun
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.193-204
    • /
    • 2015
  • An array DBMS has been expected widely from scientists because it is convenient to store and analyze the data of array type. In this paper, we describe how to handle satellite remote-sensing images in the array DBMS. However, previous works in their visualization have two problems as follows. First, the images are visualized as a state of distorted by the curvature of the earth. Second, it is difficult to apply the results of visualization by pre-written queries to other analyses. Therefore, this paper proposes a three dimensional visualization method of satellite remote-sensing images, not traditional 2D visualization. Our research contents are as follows. First, we describe how to store, process, and analyze the satellite remote-sensing images in the array DBMS. Second, we propose a three-dimensional visualization method for their processed outputs. Lastly, our contributions can be summarized that we propose a method of handling satellite remote-sensing images in the array DBMS and their 3D visualization techniques. It is also expected that their use be available widely in many industrial areas.

Calculating coniferous tree coverage using unmanned aerial vehicle photogrammetry

  • Ivosevic, Bojana;Han, Yong-Gu;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.85-92
    • /
    • 2017
  • Unmanned aerial vehicles (UAVs) are a new and yet constantly developing part of forest inventory studies and vegetation-monitoring fields. Covering large areas, their extensive usage has saved time and money for researchers and conservationists to survey vegetation for various data analyses. Post-processing imaging software has improved the effectiveness of UAVs further by providing 3D models for accurate visualization of the data. We focus on determining the coniferous tree coverage to show the current advantages and disadvantages of the orthorectified 2D and 3D models obtained from the image photogrammetry software, Pix4Dmapper Pro-Non-Commercial. We also examine the methodology used for mapping the study site, additionally investigating the spread of coniferous trees. The collected images were transformed into 2D black and white binary pixel images to calculate the coverage area of coniferous trees in the study site using MATLAB. The research was able to conclude that the 3D model was effective in perceiving the tree composition in the designated site, while the orthorectified 2D map is appropriate for the clear differentiation of coniferous and deciduous trees. In its conclusion, the paper will also be able to show how UAVs could be improved for future usability.

Data Transformation and Display Technique for 3D Visualization of Rainfall Radar (강우레이더의 3차원 가시화를 위한 데이터 변환 및 표출기법)

  • Kim, Hyeong Hun;Park, Hyeon Cheol;Choi, Yeong Cheol;Kim, Tae Su;Choung, Yun Jae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.352-362
    • /
    • 2017
  • This paper proposes an algorithm for automatically converting and displaying rainfall radar data on a 3D GIS platform. The weather information displayed like rainfall radar data is updated frequently and large-scale. Thus, in order to efficiently display the data, an algorithm to convert and output the data automatically, rather than manually, is required. In addition, since rainfall data is extracted from the space, the use of the display image fused with the 3D GIS data representing the space enhances the visibility of the user. To meet these requirements, this study developed the Auto Data Converter application that analyzes the raw data of the rainfall radar and convert them into a universal format. In addition, Unity 3D, which has good development accessibility, was used for dynamic 3D implementation of the converted rainfall radar data. The software applications developed in this study could automatically convert a large volume of rainfall data into a universal format in a short time and perform 3D modeling effectively according to the data conversion on the 3D platform. Furthermore, the rainfall radar data could be merged with other GIS data for effective visualization.