Browse > Article
http://dx.doi.org/10.4218/etrij.2018-0505

Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging (Invited paper)  

Kus, Arkadiusz (Warsaw University of Technology, Institute of Micromechanics and Photonics)
Krauze, Wojciech (Warsaw University of Technology, Institute of Micromechanics and Photonics)
Makowski, Piotr L. (Warsaw University of Technology, Institute of Micromechanics and Photonics)
Kujawinska, Malgorzata (Warsaw University of Technology, Institute of Micromechanics and Photonics)
Publication Information
ETRI Journal / v.41, no.1, 2019 , pp. 61-72 More about this Journal
Abstract
In this paper, we demonstrate the current concepts in holographic tomography (HT) realized within limited angular range with illumination scanning. The presented solutions are based on the work performed at Warsaw University of Technology in Poland and put in context with the state of the art in HT. Along with the theoretical framework for HT, the optimum reconstruction process and data visualization are described in detail. The paper is concluded with the description of hardware configuration and the visualization of tomographic reconstruction, which is calculated using a provided processing path.
Keywords
holographic tomography; optical diffraction tomography; tomographic phase microscopy; cell refractive index; 3D imaging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. D. A. Levin et al., Tutorial on the visualization of volumetric data using tomviz, Microsc. Today 26 (2018), no. 1, 12-17.   DOI
2 K. R. Lee et al., Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications, Sensors (Basel, Switzerland) 13 (2013), 4170-4191.   DOI
3 Z. Wang et al., Tissue refractive index as marker of disease, J. Biomed. Opt. 16 (2011), no. 11, 116017.   DOI
4 G. Popescu, Quantitative Phase Imaging of Cells and Tissues, McGraw Hill Professional, March 2011.
5 P. Bon et al., Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells, Opt. Express 17 (2009), no. 15, 13080.   DOI
6 N. Streibl, Three-dimensional imaging by a microscope, JOSA A2 (1985), no. 2, 121-127.   DOI
7 M. Oheim et al., Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches, Adv. Drug Deliv. Rev. 58 (2006), no. 7, 788-808.   DOI
8 B. M. Michalska et al., Insight into the fission mechanism by quantitative characterization of Drp1 protein distribution in the living cell, Scienti. Rep. 8 (2018), no. 8122, 1-15.   DOI
9 D. Jin et al., Tomographic phase microscopy : Principles and applications in bioimaging, JOSA B 34 (2017), no. 5, B64-B77.   DOI
10 G. Popescu and Y. Park, Quantitative phase imaging in biomedicine, Nat. Photon. 12 (2018), 578-589.   DOI
11 R. Barer, Determination of Dry Mass, Thickness, Solid and Water Concentration in Living Cells, Nature 172 (1953), no. 4389, 1097-1098.   DOI
12 B. Kemper et al., Investigation of living pancreas tumor cells by digital holographic microscopyy, J. Biomed. Opt. 11 (2006), no. 3, 34005.   DOI
13 G. Popescu et al., Optical imaging of cell mass and growth dynamics, Am. J. Physiol. Cell Physiol. 295 (2008), no. 2, 345-348.
14 K. Kim et al., Optical diffraction tomography techniques for the study of cell pathophysiology, J. Biomed. Photon. Eng. 2 (2016), no. 2, 020201.
15 Z. Wang et al., Spatial light interference tomography (SLIT), Opt. Express 19 (2011), no. 21, 19907.   DOI
16 O. Haeberle et al., Tomographic diffractive microscopy: Basics, techniques and perspectives, J. Modern Opt. 57 (2010), no. 9, 686-699.   DOI
17 C. J. R. Sheppard and S. S. Kou, 3d imaging with holographic tomography, AIP Conf. Proc. 1236 (2010), no. 1, 65-69.
18 Y. Sung and R. R. Dasari, Deterministic regularization of threedimensional optical diffraction tomography, JOSA A 28 (2011), no. 8, 1554-1561.   DOI
19 Y. Cotte et al., Marker-free phase nanoscopy, Nat. Photon. 7 (2013), 113-117.   DOI
20 H.-Y. Liu et al., SEAGLE: Sparsity-Driven Image Reconstruction Under Multiple Scattering, IEEE Trans. Comput. Imag. 4 (2018), no. 1, 73-86.   DOI
21 P. Hosseini et al., Scanning color optical tomography (scot), Opt. Express 23 (2015), no. 15, 19752-19762.   DOI
22 Y. Bao and T. K. Gaylord, Quantitative phase imaging method based on an analytical nonparaxial partially coherent phase optical transfer function, J. Opt. Soc. Am. A 33 (2016), no. 11, 2125.   DOI
23 M. Chen, L. Tian, and L. Waller, 3D differential phase contrast microscopy, Biomed. Opt. Express 7 (2016), no. 10, 3940-3950.   DOI
24 J. M. Soto, J. A. Rodrigo, and T. Alieva, Optical diffraction tomography with fully and partially coherent illumination in high numerical aperture label-free microscopy [Invited], Appl. Opt. 57 (2018), no. 1, A205.   DOI
25 Tomocube hardware description, http://www.tomocube.com/product/technology/, 2018, Accessed: 2018-09-01.
26 J. W. Lim et al., Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography, Opt. Express 23 (2015), no. 13, 16933.   DOI
27 B. Vinoth et al., Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution , Scienti. Rep. 8 (2018), no. 1, 5943.   DOI
28 Nanolive Cell Explorer hardware description, http://nanolive.ch/hardware, 2018, Accessed: 2018-09-01.
29 W. Krauze et al., Reconstruction method for extended depth-offield optical diffraction tomography, Methods 136 (2018), no. 1 March 2018, 40-49.   DOI
30 W. Krauze et al., Generalized total variation iterative constraint strategy in limited angle optical diffraction tomography, Opt. Express 24 (2016), no. 5, 4924-4936.   DOI
31 A. Kus, P. L. Makowski, and M. Kujawinska, Advances in design and testing of limited angle optical diffraction tomography system for biological applications, Proc. SPIE 9718 (2016), 1-9.
32 J. Kostencka et al., Accurate approach to capillary-supported optical diffraction tomography, Opt. Express 23 (2015), no. 6, 7908-7923.   DOI
33 E. Wolf, Three-dimensional structure determination of semitransparent objects from holographic data, Opt. Commun. 1 (1969), no. 4, 153-156.   DOI
34 W. Krauze, Method for the numerical analysis of phase biological microsamples in limited-angle optical tomography, Ph.D. thesis, Warsaw University of Technology, 2018.
35 A. C. Kak and M. Slaney, Principles of computerized tomographic imaging, SIAM, 2001.
36 B. Simon et al., Tomographic diffractive microscopy with isotropic resolution, Optica 4 (2017), no. 4, 460-463.   DOI
37 V. Lauer, New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope, J. Microsc. 205 (2002), no. 2, 165-176.   DOI
38 A. Kus, Illumination-related errors in limited-angle optical diffraction tomography, Appl. Opt. 56(2017), no. 33, 9247-9256.   DOI
39 Y. Sung et al., Optical diffraction tomography for high resolution live cell imaging, Opt. Express 17 (2009), no. 1, 266-277.   DOI
40 F. Merola et al., Tomographic flow cytometry by digital holography, Light Sci. Appl. 6 (2017), 1-7.
41 W. Choi et al., Tomographic phase microscopy, Nat. Methods 4 (2007), no. 9, 717-719.   DOI
42 T. M. Habashy, R. W. Groom, and B. R. Spies, Beyond the born and rytov approximations: A nonlinear approach to electromagnetic scattering, J. Geophys. Res. 98 (1993), no. B2, 1759-1775.   DOI
43 S. O. Isikman et al., Lens-free optical tomographic microscope with a large imaging volume on a chip, Proc. Natl. Acad. Sci. USA 108 (2011), no. 18, 7296-301.   DOI
44 Y. Sung et al., Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy, PloS ONE 7 (2012), no. 11, e49502.   DOI
45 K. Kim et al., Diffraction optical tomography using a quantitative phase imaging unit, Opt. Lett. 39 (2014), no. 24, 6935-6938.   DOI
46 Y. Kim et al., Profiling individual human red blood cells using common-path diffraction optical tomography, Scienti. Rep. 4 (2014), 6659.   DOI
47 J. Kostencka et al., Holographic tomography with scanning of illumination: Space-domain reconstruction for spatially invariant accuracy, Biomed. Opt. Express 7 (2016), no. 10, 4086-4100.   DOI
48 G. Popescu et al., Diffraction phase microscopy for quantifying cell structure and dynamics, Opt. Lett. 31 (2006), no. 6, 775-777.   DOI
49 K. Kim et al., High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography, J. Biomed. Opt. 19 (2014), no. 1, 011005.   DOI
50 W. Krauze, A. Kus, and M. Kujawinska, Limited-angle hybrid optical diffraction tomography system with total-variation-minimization-based reconstruction, Opt. Eng. 54 (2015), 054104.   DOI
51 S. Kawata et al., Laser computed-tomography microscope, Appl. Opt. 29 (1990), no. 26, 3805-3809.   DOI
52 K. R. Lee et al., Time-multiplexed structured illumination using a DMD for optical diffraction tomography, Opt. Lett. 42 (2017), no. 5, 999-1002.   DOI
53 S. Shin et al., Optical diffraction tomography using a digital micromirror device for stable measurements of 4-D refractive index tomography of cells, Proc. SPIE Int. Soc. Opt. Eng. 9718 (2016), no. 971814, 1-8.
54 A. Kus, W. Krauze, and M. Kujawinska, Active limited-angle tomographic phase microscope, J. Biomed. Opt. 20 (2015), no. 11, 111216.   DOI
55 S. Shin et al., Active illumination using a digital micromirror device for quantitative phase imaging, Opt. Lett. 40 (2015), no. 22, 1-5.   DOI
56 P. L. Makowski, Redundant Haar wavelet regularization in sparse-view optical diffraction tomography of microbiological structures, Speckle 2018: VII International Conference on Speckle Metrology, vol. 10834, International Society for Optics and Photonics, Sept. 2018, p. 108341U.
57 A. Kus, W. Krauze, and M. Kujawinska, Focus-tunable lens in limited-angle holographic tomography, Proc. SPIE 10070 (2017), 1-9.
58 S. J. LaRoque, E. Y. Sidky, and X. Pan, Accurate image reconstruction from few-view and limited-angle data in diffraction tomography, JOSA A 25 (2008), no. 7, 1772-1782.   DOI
59 A. Pryor et al., GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3d imaging, Scienti. Rep. 7 (2017), no. 1, 1-12.   DOI
60 A. Kus et al., Limited-angle hybrid diffraction tomography for biological samples, Proc. SPIE 9132 (2014), 91320O.
61 E. Y. Sidky, C.-M. Kao, and X. Pan, Accurate image reconstruction from few-views and limited-angle data in divergent-beam ct, J. X-ray Sci. Technol. 14 (2006), no. 2, 119-139.
62 Y. Bao and T. K. Gaylord, Iterative optimization in tomographic deconvolution phase microscopy, JOSAA35 (2018), no. 4, 652-660.   DOI
63 X. Jin et al., Anisotropic total variation for limited-angle ct reconstruction, Nuclear Science Symposium Conference Record (NSS/MIC), 2010 IEEE, IEEE, 2010, pp. 2232-2238.
64 A. Kus, W. Krauze, and M. Kujawinska, Limited-angle, holographic tomography with optically controlled projection generation, Proc. SPIE 9330 (2015), 933007.
65 E. Y. Sidky, J. H. Jorgensen, and X. Pan, Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm, Phys. Med. Biol. 57(2012), no. 10, 3065.   DOI
66 A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imag. Vis. 40 (2011), no. 1, 120-145.   DOI
67 W. Krauze and M. Kujawinska, Sinogram cleaning procedure for optical diffraction tomography, Proc. SPIE 10834 (2018), no. 108341Q, 1-5.
68 E. Soubies, T.-A. Pham, and M. Unser, Efficient inversion of multiple-scattering model for optical diffraction tomography, Opt. Express 25 (2017), no. 18, 21786-21800.   DOI
69 C. Godavarthi et al., Superresolution with full-polarized tomographic diffractive microscopy, JOSAA 32 (2015), no. 2, 287-292.   DOI
70 H. Spielmann et al., The international EU/COLIPA in vitro phototoxicity validation study: results of Phase II (blind trial). Part 1: The 3T3 NRU phototoxicity test, Toxicol. In Vitro 12 (1998), no. 3, 305-327.   DOI
71 M. Takeda et al., Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry, J. Opt. Soc. Am. 72 (1982), no. 1, 156.   DOI
72 A. Limaye, Drishti: A volume exploration and presentation tool, Proc. SPIE 8506 (2018), 85060X.