• Title/Summary/Keyword: 3D Video Coding

Search Result 193, Processing Time 0.032 seconds

HEVC Encoder Optimization using Depth Information (깊이정보를 이용한 HEVC의 인코더 고속화 방법)

  • Lee, Yoon Jin;Bae, Dong In;Park, Gwang Hoon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.640-655
    • /
    • 2014
  • Many of today's video systems have additional depth camera to provide extra features such as 3D support. Thanks to these changes made in multimedia system, it is now much easier to obtain depth information of the video. Depth information can be used in various areas such as object classification, background area recognition, and so on. With depth information, we can achieve even higher coding efficiency compared to only using conventional method. Thus, in this paper, we propose the 2D video coding algorithm which uses depth information on top of the next generation 2D video codec HEVC. Background area can be recognized with depth information and by performing HEVC with it, coding complexity can be reduced. If current CU is background area, we propose the following three methods, 1) Earlier stop split structure of CU with PU SKIP mode, 2) Limiting split structure of CU with CU information in temporal position, 3) Limiting the range of motion searching. We implement our proposal using HEVC HM 12.0 reference software. With these methods results shows that encoding complexity is reduced more than 40% with only 0.5% BD-Bitrate loss. Especially, in case of video acquired through the Kinect developed by Microsoft Corp., encoding complexity is reduced by max 53% without a loss of quality. So, it is expected that these techniques can apply real-time online communication, mobile or handheld video service and so on.

Global Disparity Compensation for Multi-view Video Coding

  • Oh, Kwan-Jung;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.12 no.6
    • /
    • pp.624-629
    • /
    • 2007
  • While single view video coding uses the temporal prediction scheme, multi-view video coding (MVC) applies both temporal and inter-view prediction schemes. Thus, the key problem of MVC is how to reduce the inter-view redundancy efficiently, because various existing video coding schemes have already provided solutions to reduce the temporal correlation. In this paper, we propose a global disparity compensation scheme which increases the inter-view correlation and a new inter-view prediction structure based on the global disparity compensation. By experiment, we demonstrate that the proposed global disparity compensation scheme is less sensitive to change of the search range. In addition, the new Inter-view prediction structure achieved about $0.1{\sim}0.3dB$ quality improvement compared to the reference software.

Rate control to reduce bitrate fluctuation on HEVC

  • Yoo, Jonghun;Nam, Junghak;Ryu, Jiwoo;Sim, Donggyu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.152-160
    • /
    • 2012
  • This paper proposes a frame-level rate control algorithm for low delay video applications to reduce the fluctuations in the bitrate. The proposed algorithm minimizes the bitrate fluctuations in two ways with minimal coding loss. First, the proposed rate control applies R-Q model to all frames including the first frame of every group of pictures (GOP) except for the first one of a sequence. Conventional rate control algorithms do not use any R-Q models for the first frame of each GOP and do not estimate the generated-bit. An unexpected output rate result from the first frame affects the remainder of the pictures in the rate control. Second, a rate-distortion (R-D) cost is calculated regardless of the hierarchical coding structure for low bitrate fluctuations because the hierarchical coding structure controls the output bitrate in rate distortion optimization (RDO) process. The experimental results show that the average variance of per-frame bits with the proposed algorithm can reduce by approximately 33.8% with a delta peak signal-to-noise ratio (PSNR) degradation of 1.4dB for a "low-delay B" coding structure and by approximately 35.7% with a delta-PSNR degradation of 1.3dB for a "low-delay P" coding structure, compared to HM 8.0 rate control.

  • PDF

Overview and Performance analysis of the HEVC based 3D Video Coding (HEVC 기반 3차원 비디오 부호화 기법 성능 분석)

  • Park, Daemin;Choi, Haechul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.186-189
    • /
    • 2013
  • 최근 다양한 3D 콘텐츠들에 대한 사용자의 요구에 따라 HD(High Definition)화질 및 이를 넘어서는 고해상도(FHD(full high definition), UHD(ultra high definition))의 고품질 3D 방송 서비스에 대한 연구가 진행되고 있으며, 차세대 영상 기술로 주목되고 있는 3차원 비디오 기술은 사용자에게 실감 있는 영상을 제공할 수 있다, 하지만 많은 시점을 전부 촬영하는 것은 한계가 있으므로, 카메라의 깊이 정보를 이용하여, 전송하는 시점을 줄이고, 시점영상을 합성함으로써 사용하는 카메라의 수보다 더 많은 시점을 생성하는 방법이 필요하다. 현재 국제 표준화 기구인 MPEG(Moving Picture Experts Group)의 3차원 비디오 부호화(3D Video Coding, 3DVC)에서는 깊이영상을 가지는 3차원 비디오영상에 대한 효과적인 부호화 기술들에 대해 표준화가 진행되고 있다. 이에 본 논문은 HEVC 기반의 3D-HEVC에서 사용하는 표준 기술들에 대하여 소개하고, 현재 사용되고 있는 기술들에 대한 성능 평가를 분석 하였다.

  • PDF

Bit-plane based Lossless Depth Map Coding Method (비트평면 기반 무손실 깊이정보 맵 부호화 방법)

  • Kim, Kyung-Yong;Park, Gwang-Hoon;Suh, Doug-Young
    • Journal of Broadcast Engineering
    • /
    • v.14 no.5
    • /
    • pp.551-560
    • /
    • 2009
  • This paper proposes a method for efficient lossless depth map coding for MPEG 3D-Video coding. In general, the conventional video coding method such as H.264 has been used for depth map coding. However, the conventional video coding methods do not consider the image characteristics of the depth map. Therefore, as a lossless depth map coding method, this paper proposes a bit-plane based lossless depth mar coding method by using the MPEG-4 Part 2 shape coding scheme. Simulation results show that the proposed method achieves the compression ratios of 28.91:1. In intra-only coding, proposed method reduces the bitrate by 24.84% in comparison with the JPEG-LS scheme, by 39.35% in comparison with the JPEG-2000 scheme, by 30.30% in comparison with the H.264(CAVLC mode) scheme, and by 16.65% in comparison with the H.264(CABAC mode) scheme. In addition, in intra and inter coding the proposed method reduces the bitrate by 36.22% in comparison with the H.264(CAVLC mode) scheme, and by 23.71% in comparison with the 0.264(CABAC mode) scheme.

Motion Vector Predictor selection method for multi-view video coding (다시점 비디오 부호화를 위한 움직임벡터 예측값 선택 방법)

  • Choi, Won-Jun;Suh, Doug-Young;Kim, Kyu-Heon;Park, Gwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.12 no.6
    • /
    • pp.565-573
    • /
    • 2007
  • In this paper, we propose a method to select motion vector predictor by considering prediction structure of a multi view content for coding efficiency of multi view coding which is being standardized in JVT. Motion vector of a different tendency is happened while carrying out temporal and view reference prediction of multi-view video coding. Also, due to the phenomena of motion vectors being searched in both temporal and view order, the motion vectors do not agree with each other resulting a decline in coding efficiency. This paper is about how the motion vector predictor are selected with information of prediction structure. By using the proposed method, a compression ratio of the proposed method in multi-view video coding is increased, and finally $0.03{\sim}0.1$ dB PSNR(Peak Signal-to-Noise Ratio) improvement was obtained compared with the case of JMVM 3.6 method.

Interframe Coding for 3-D Medical Images Using an Adaptive Mode Selection Technique in Wavelet Transform Domain (웨이블릿 변환 영역에서의 적응적 모드 선택 기법을 이용한 3차원 의료 영상을 위한 interframe 부호화)

  • 조현덕;나종범
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.265-274
    • /
    • 1999
  • In this paper, we propose a novel interframe coding algorithm especially appropriate for 3-D medical images. The proposed algorithm is based on a video coding algorithm using motion estimation/ compensation and transform coding. In the algorithm, warping is adopted lor motion compensation (MC). Then, by using adaptive mode selection, a motion compensated residual image and original image are mixed up in the wavelet transform domain for improvement in coding performance. The mixed image is then compressed by the zerotree coding method. We prove that the adaptive mode selection technique in the wavelet transform domain is very useful lor 3-D medical image coding. Simulation results show that the proposed scheme provides good performance regardless of inter-slice distance and is prospective for 3-D medical image compression.

  • PDF

Error Concealment Using Inter-layer Correlation for Scalable Video Coding

  • Park, Chun-Su;Wang, Tae-Shick;Ko, Sung-Jea
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.390-392
    • /
    • 2007
  • In this paper, we propose a new error concealment (EC) method using inter-layer correlation for scalable video coding. In the proposed method, the auxiliary motion vector (MV) and the auxiliary mode number (MN) of intra prediction are interleaved into the bitstream to recover the corrupted frame. In order to reduce the bit rate, the proposed method encodes the difference between the original and the predicted values of the MV and MN instead of the original values. Experimental results show that the proposed EC outperforms the conventional EC by 2.8 dB to 6.7 dB.

  • PDF

3D 비디오 부호화 표준 기술

  • Park, Si-Nae;Sim, Dong-Gyu
    • The Magazine of the IEIE
    • /
    • v.37 no.9
    • /
    • pp.33-41
    • /
    • 2010
  • 최근 디스플레이 기술의 비약적인 발전과 함께 3D 영화의 흥행으로 인해 국내 뿐 아니라 전 세계적으로 3DTV에 대한 관심이 높아지고 있다. 3DTV는 사람의 눈 사이의 간격 때문에 두 눈에 맺히는 상이 달라지는 양안시차의 원리를 이용하는 기술로, 두 눈에 맺힐 두 영상을 각각 획득하고, 이를 사람의 두 눈에 각각 보여지도록 하는 방식으로 3차원 입체 비디오를 실현하게 된다. 이를 위한 3D 비디오의 부호화 표준 기술로는 기존에 MPEG-2 stereo 및 MPEG-C part 2가 ISO/IEC MPEG을 통하여 제정된바 있으며, 최근에는 ITU-T의 VCEG과 ISO/IEC MPEG이 비디오 부호화 표준을 위하여 Joint Video Coding (JVT)를 구성하여, Multi-view Video Coding (MVC)를 제정하였다. 그리고 현재 진행되는 3D비디오 관련 표준화로는 MPEG에서 Free view-point TV (FTV)등의 응용을 위한 3DV라는 이름으로 차세대 비디오 표준을 준비하고 있다. 본 고에서는 기존에 MPEG을 통해 진행된 3DTV 관련 표준화 기술을 알아보고, 현재 진행되고 있는 3DTV 부호화 표준화 동향을 살펴본다.

  • PDF

A 3D Wavelet Coding Scheme for Light-weight Video Codec (경량 비디오 코덱을 위한 3D 웨이블릿 코딩 기법)

  • Lee, Seung-Won;Kim, Sung-Min;Park, Seong-Ho;Chung, Ki-Dong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.177-186
    • /
    • 2004
  • It is a weak point of the motion estimation technique for video compression that the predicted video encoding algorithm requires higher-order computational complexity. To reduce the computational complexity of encoding algorithms, researchers introduced techniques such as 3D-WT that don't require motion prediction. One of the weakest points of previous 3D-WT studies is that they require too much memory for encoding and too long delay for decoding. In this paper, we propose a technique called `FS (Fast playable and Scalable) 3D-WT' This technique uses a modified Haar wavelet transform algorithm and employs improved encoding algorithm for lower memory and shorter delay requirement. We have executed some tests to compare performance of FS 3D-WT and 3D-V. FS 3D-WT has exhibited the same high compression rate and the same short processing delay as 3D-V has.