• Title/Summary/Keyword: 3D Tunnel face

Search Result 88, Processing Time 0.023 seconds

A numerical study on the safety of tunnel face using face bolting method (페이스 볼트 공법을 이용한 터널 막장 안정성에 관한 수치해석적 연구)

  • Ra, Jee-Hyun;Yoon, Ji-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.83-89
    • /
    • 2007
  • As tunnel excavation generats stress release, a stability security of tunnel face is mainly important in case of tunnel excavation in the weak grounds. Using the steel bar or glass fiber pipe which had regular hardness, a face bolt method to reinforce previously is applied to an excavation object tunnel face aspect among measures methods regarding this. Therefore, used $FLAC^{3D}$ Ver. 2.1 on 5 Case of 0.5D (2EA), 1.0D, 1.5D, 2.0D with the length and 6 Case of 0, 20, 40, 60, 80, 100EA with the number of the bolt that a face bolt method was installed at these papers in the necessary weak grounds in order to review applicability of the tunnel face reinforcement method that used these face bolts, and executed three dimension continuous analysis.

  • PDF

A Intercomparison on the estimating shield TBM tunnel face pressure through analytical and numerical analysis (이론해와 수치해석적 검토를 통한 쉴드TBM 막장압 산정 결과 상호비교)

  • Jun, Gy-Chan;Kim, Dong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.273-282
    • /
    • 2016
  • This study estimates tunnel face pressure through existing 8 analytical equations and 3D numerical analysis, and compares and examines it. In general, the estimating tunnel face pressure of domestic shield TBM has been examined by a method according to analytical equation and empirical method, but numerical analysis is combined in a section passing complicated stratigraphic condition and special soil condition. Therefore, the researcher is to find a reliable method to examine of tunnel face pressure by confirming a correlation between tunnel face pressure estimated by equation and tunnel face pressure estimated by numerical analysis program. When tunnel face pressure is estimated, both analytical equation and numerical analysis were identically examined in soil conditions such as sandy soil and cohesive soil. In addition, existing analytical equation is used as equation, and 3D analysis copying construction process and shield tunnel as numerical analysis.

3D Tunnel Face Modelling for Discontinuities Characterization: A Comparison of Lidar and Photogrammetry Methods (불연속성 특성화를 위한 3차원 터널 막장 모델링: 라이더 및 사진 측량 접근 방식의 비교 분석 중심으로)

  • Chuyen, Pham;Hyu-Soung, Shin
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.549-557
    • /
    • 2022
  • Tunnel face mapping involves the determination of rock discontinuities or weak rock conditions where extra support might be required. In this study, we investigated the application of Lidar scanning and photogrammetry to quantitatively characterize discontinuities of the rock mass on the tunnel face during excavation. The 3D models of tunnel faces generated by using these methods enable accurate and automatic discontinuity measurement to overcome the limitations of manual mapping. The results of this study show that both photogrammetry and Lidar can be used to reconstruct the 3D model of the tunnel face, although the photogrammetric 3D model is less detailed than its counterpart produced by Lidar. Given acceptable accuracy and cost-effectiveness, photogrammetry can be a fast, reliable, and low-cost alternative to Lidar for acquiring 3D models and determining rock discontinuities on tunnel faces.

Study on the Effect of Bolt and Sub-bench on the Stabilization of Tunnel Face through FEM Analysis (FEM해석에 의한 막장볼트 및 보조벤치의 막장안정성 효과에 관한 연구)

  • Kim, Sung-Ryul;Yoon, Ji-Sun
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.427-435
    • /
    • 2008
  • In this paper, review was made for the excavation method and optimum bench length for unstable tunnel face in case of rock classification type V in order to make the best use of in-situ bearing capacity. 3D FEM analyses were performed to investigate the influences on the tunnel face and adjacent area with regard to the pattern and number of bolts when face bolts were used as a supplementary measure. As a result of this study, full section excavation method with sub-bench is effective in reducing the displacement greatly due to early section closure. Displacement-resistant effects in accordance with the bolting patterns are grid type, zig-zag type and then circular type in order of their effect. And horizontal extrusion displacement of tunnel face reduces as the number of bolts increase. A grid type face bolt covering $1.5m^2$ of tunnel face could secure the face stability in case of full section excavation method with sub-bench.

Model Test on the Optimization of Concave-Shaped Face Development for Rapid Tunnel-Whole-Face Excavation (대단면 급속시공을 위한 최적의 곡면막장형상개발에 관한 모형실험)

  • Ryu, Seung-Il;Yoon, Ji-Son
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1335-1342
    • /
    • 2005
  • In this paper, there is intended to introduce the new tunnel face shape, that is concave shaped face, and discusses its effects on the tunnel stabilization. Therefore, a comparative analysis in which the stability of a concave face was compared to that of a conventional plane face on the basis of displacement patterns in the tunnel face was conducted using a model test. In order to check and confirm displacement patterns on the concave face according to the radius of curvature as well as those around the face according to lateral pressure coefficient(k), two experimental concave models, produced at a scale of 1:2 and 1:5(tunnel radius), of the forefront of the curved area extended from plane face was built and tested.

  • PDF

Effect of construction sequence on three-arch tunnel behavior-Numerical investigation

  • Yoo, C.;Choi, J.
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.911-917
    • /
    • 2018
  • This paper concerns a numerical investigation on the effect of construction sequence on three-arch (3-Arch) tunnel behavior. A three-arch tunnel section adopted in a railway tunnel construction site was considered in this study. A calibrated 3D finite element model was used to conduct a parametric study on a variety of construction scenarios. The results of analyses were examined in terms of tunnel and ground surface settlements, shotcrete lining stresses, loads and stresses developed in center column in relation to the tunnel construction sequence. In particular, the effect of the side tunnel construction sequence on the structural performance of the center structure was fully examined. The results indicated that the load, thus stress, in the center structure can be smaller when excavating two side tunnels from opposite direction than excavating in the same direction. Also revealed was that no face lagging distance between the two side tunnels impose less ground load to the center structure. Fundamental governing mechanism of three-arch tunnel behavior is also discussed based on the results.

Influence of Weak Ground Ahead of the Tunnel Face on 3D-displacement and Face Extrusion (막장전방의 연약층이 터널 3차원변위 및 막장 수평변위에 미치는 영향)

  • Jeon, Je-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.189-206
    • /
    • 2003
  • During tunnel excavation in urban area a systematic monitoring is important for the purpose of determination of support type and quantity, as well as for the control of stability of both surface structures and the tunnel itself due to the frequently, and in many cases, abruptly changing ground condition. In Austria absolute displacement monitoring methods have replaced relative displacement measurements by geodetic methods to a large extent. Prompt detection of weak ground ahead of the tunnel face as well as better adjustment of excavation and support to the geotechnical conditions is possible with the help of the improved methods of data evaluation on sites. Deformation response of the ground to excavation starts ahead of the tunnel face, therefore, the deformation and state of the tunnel advance core is the key factor of the whole deformation process after excavation. In other words, the rigidity and state of the advance core play a determining role in the stability of both surface structures and the tunnel itself. This paper presents the results from detailed three-dimensional numerical studies, exploring vertical displacements, vector orientations and extrusions on tunnel face during the progressive advancement for the shallow tunnel in various geotechnical conditions.

A study on the behaviour of pre-existing single piles to adjacent shield TBM tunnelling from three-dimensional finite element analyses (3차원 유한요소해석을 통한 shield TBM 터널 근접시공에 의한 인접 단독말뚝의 거동에 대한 연구)

  • Jeon, Young-Jin;Jeon, Seung-Chan;Jeon, Sang-Joon;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.23-46
    • /
    • 2020
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of pre-existing single piles to adjacent tunnelling by considering the tunnel face pressures and the relative location of pile tips with respect to the tunnel. The numerical modelling has analysed the effect of the face pressures on the pile behaviour. The analyses concentrate on the ground settlements, the pile head settlements, the axial pile forces and the shear stress transfer mechanism at the pile-soil interface. The head settlements of the pile (the vertical distance between the pile and the tunnel: 0.25D, where D is the tunnel diameter) directly above the tunnel crown with the face pressure 50% of the in-situ horizontal soil stress at the tunnel springline decreased by about 38% compared to corresponding settlements with a face pressure 25% of the in-situ horizontal soil stress at the tunnel springline. Furthermore, it was found that the smaller the face pressure, the larger the tunnelling-induced ground movements and the axial pile forces were and the higher the degree of the shear strength mobilisation at the pile-soil interface. When the piles were outside the tunnel influence zone, compressive pile forces were developed due to tunnelling. It has been found that the ground settlements and the pile settlements are heavily affected by the face pressures and the position of the pile tip relative to the tunnel. In addition, the computed results have been compared with relevant studies previously reported in literature. The behaviour of the piles has been extensively examined and analysed by considering the key features in great detail.

A study on the evaluation method and reinforcement effect of face bolt for the stability of a tunnel face by a three dimensional numerical analysis (터널막장안정 평가기법 및 막장볼트의 보강효과에 관한 수치해석적 연구)

  • Kim, Sung-ryul;Yoon, Ji-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.11-22
    • /
    • 2009
  • Tunnel excavation with several sections and appropriate auxiliary measures such as face bolt and pre-grouting are widely used in case of weak and less rigid ground for the stability of a tunnel face during excavation. This papers first described the evaluation methods proposed in technical literature to maintain the tunnel face stable, and then studied by FEM analysis whether face reinforcement is need in what degree of ground deformation and strength features for the stability of a tunnel face when excavating by full excavation with sub-bench. Lastly, a three dimensional FEM analysis was performed to study how the tunnel face itself and the ground around the tunnel behave depending on different bolt layouts, length of bolts, number of bolts. There were relative differences in comparison of results on the stability of a tunnel face by a theoretical evaluation methods and FEM analysis, but the same in reinforced effect of face. It was found that the stability of a tunnel face can be obtained with face bolt installed longer than 1.0D (tunnel width), bolt density of about 1 bolt per every $1.5\;m^2$ (layout of grid type), and reinforcement area of $120^{\circ}$ arch area of upper section.

Digital Mapping and 3D Visualization of Tunnel Face Information under Construction (터널 시공중 굴착면 지질정보 디지털화 및 3D 가시화)

  • Kwon, Young-Ju;Lee, Cheong;Kim, Jin-Woung;Kim, Kwang-Yeom;Yim, Sung-Bin;Choi, Jai-Won
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.649-659
    • /
    • 2010
  • In this study, a tunnel information database system was developed to optimize the process of assessing and analyzing geological information from the life cycle of tunnel construction. All data from every stage in tunnel construction can be put into the system and be utilized for the decision making. In the system, tunnel face mapping information can be managed by digital format which can be easily transformed into 3D visualization module and thus help analyzing geological discontinuities. The system was applied to waterway and road tunnel in domestic area to verify its effectiveness.