• Title/Summary/Keyword: 3D Texture Mapping

Search Result 125, Processing Time 0.021 seconds

Line Drawings from 2D Images (이차원 영상의 라인 드로잉)

  • Son, Min-Jung;Lee, Seung-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.12
    • /
    • pp.665-682
    • /
    • 2007
  • Line drawing is a widely used style in non-photorealistic rendering because it generates expressive descriptions of object shapes with a set of strokes. Although various techniques for line drawing of 3D objects have been developed, line drawing of 2D images has attracted little attention despite interesting applications, such as image stylization. This paper presents a robust and effective technique for generating line drawings from 2D images. The algorithm consists of three parts; filtering, linking, and stylization. In the filtering process, it constructs a likelihood function that estimates possible positions of lines in an image. In the linking process, line strokes are extracted from the likelihood function using clustering and graph search algorithms. In the stylization process, it generates various kinds of line drawings by applying curve fitting and texture mapping to the extracted line strokes. Experimental results demonstrate that the proposed technique can be applied to the various kinds of line drawings from 2D images with detail control.

FPGA Implementation of Scan Conversion Unit using SIMD Architecture and Hierarchical Tile-based Traversing Method (계층적 타일기반 탐색기법과 SIMD 구조가 적용된 스캔변환회로의 FPGA 구현)

  • Ha, Chang-Soo;Choi, Byeong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2023-2030
    • /
    • 2010
  • In this paper, we present research results of developing high performance scan conversion unit and implementing it on FPGA chip. To increase performance of scan conversion unit, we propose an architecture of scan converter that is a SIMD architecture and uses tile-based traversing method. The proposed scan conversion unit can operate about 124Mhz clock frequency on Xilinx Vertex4 LX100 device. To verify the scan conversion unit, we also develop shader unit, texture mapping unit and $240{\times}320$ color TFT-LCD controller to display outputs of the scan conversion unit on TFT-LCD. Because the scan conversion unit implemented on FPGA has 311Mpixels/sec pixel rate, it is applicable to desktop pc's 3d graphics system as well as mobile 3d graphics system needing high pixel rates.

A Double Z-buffer Antialiasing Method for Voxelized Implicit Surfaces (복셀로 표현된 임플리시트 곡면을 위한 시프트(shifted) 더블 Z-버퍼 앤티 앨리어싱)

  • 김학란;박화진
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.1
    • /
    • pp.44-53
    • /
    • 2004
  • This paper aims at presenting high quality at low resolution apply by a new antialiasing method for voxelized implicit surfaces. Implicit surfaces create a unique type of 3D-modeling. Some use of implicit surfaces are scientific and medical visualization, animation, medical simulation and interactive modeling. One of previous antialiasing methods for implicit surfaces presented by raytracing or texture mapping is making use of a stochastic sampling. But this method requires more calculation time and costs which is caused by complicated and difficult implicit functions. In the meanwhile, voxelized implicit surfaces generally use high resolution for good quality images but it costs to generate. In order to this problem, this paper suggests a shifted double Z-buffer which is very simple, more efficient and easy. Tn addition, there are applied box-filter and tent-filter to the double Z-buffer antialiasing method for better images. For results this method generate high quality image and it is easy to apply to various filters and is able to extend to multi Z-buffer.

  • PDF

An Improved Remote Sensing Image Fusion Algorithm Based on IHS Transformation

  • Deng, Chao;Wang, Zhi-heng;Li, Xing-wang;Li, Hui-na;Cavalcante, Charles Casimiro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1633-1649
    • /
    • 2017
  • In remote sensing image processing, the traditional fusion algorithm is based on the Intensity-Hue-Saturation (IHS) transformation. This method does not take into account the texture or spectrum information, spatial resolution and statistical information of the photos adequately, which leads to spectrum distortion of the image. Although traditional solutions in such application combine manifold methods, the fusion procedure is rather complicated and not suitable for practical operation. In this paper, an improved IHS transformation fusion algorithm based on the local variance weighting scheme is proposed for remote sensing images. In our proposal, firstly, the local variance of the SPOT (which comes from French "Systeme Probatoire d'Observation dela Tarre" and means "earth observing system") image is calculated by using different sliding windows. The optimal window size is then selected with the images being normalized with the optimal window local variance. Secondly, the power exponent is chosen as the mapping function, and the local variance is used to obtain the weight of the I component and match SPOT images. Then we obtain the I' component with the weight, the I component and the matched SPOT images. Finally, the final fusion image is obtained by the inverse Intensity-Hue-Saturation transformation of the I', H and S components. The proposed algorithm has been tested and compared with some other image fusion methods well known in the literature. Simulation result indicates that the proposed algorithm could obtain a superior fused image based on quantitative fusion evaluation indices.

Real-Time Shadow Generation using Image Warping (이미지 와핑을 이용한 실시간 그림자 생성 기법)

  • Kang, Byung-Kwon;Ihm, In-Sung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.5
    • /
    • pp.245-256
    • /
    • 2002
  • Shadows are important elements in producing a realistic image. Generation of exact shapes and positions of shadows is essential in rendering since it provides users with visual cues on the scene. It is also very important to be able to create soft shadows resulted from area light sources since they increase the visual realism drastically. In spite of their importance. the existing shadow generation algorithms still have some problems in producing realistic shadows in real-time. While image-based rendering techniques can often be effective1y applied to real-time shadow generation, such techniques usually demand so large memory space for storing preprocessed shadow maps. An effective compression method can help in reducing memory requirement, only at the additional decoding costs. In this paper, we propose a new image-barred shadow generation method based on image warping. With this method, it is possible to generate realistic shadows using only small sizes of pre-generated shadow maps, and is easy to extend to soft shadow generation. Our method will be efficiently used for generating realistic scenes in many real-time applications such as 3D games and virtual reality systems.