• Title/Summary/Keyword: 3D Stereoscopic Video

Search Result 134, Processing Time 0.023 seconds

Development of 3D Display System for Video-guide Operation

  • Honda, Toshio;Suzuki, Kou;Kuboshima, Yasuhito;Shiina, Tatsuo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1799-1802
    • /
    • 2007
  • In the constructed auto-stereoscopic display system for one observer. 1.stereoscopic images displayed on a special LCD are made on a large concave mirror. 2.The view-zone limiting aperture is set between the projection lens and the concave mirror. 3.The real image of the aperture is made at the observer's eye position by the concave mirror. 4.The observer's eye-position tracking of the view-zone is realized. 5.At same time, stereoscopic image changes automatically according to the eye position of the observer.

  • PDF

Detection of View Reversal in a Stereo Video

  • Son, Ji Deok;Song, Byung Cheol
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.317-321
    • /
    • 2013
  • This paper proposes a detection algorithm for view reversal in a stereoscopic video using a disparity map and motion vector field. We obtain the disparity map of a stereo image was obtained using a specific stereo matching algorithm and classify the image into the foreground and background. Next, the motion vector field of the image on a block basis was produced using a full search algorithm. Finally, the stereo image was considered to be reversed when the foreground moved toward the background and the covered region was in the foreground. The proposed algorithm achieved a good detection rate when the background was covered sufficiently by its moving foreground.

  • PDF

Pattern-based Depth Map Generation for Low-complexity 2D-to-3D Video Conversion (저복잡도 2D-to-3D 비디오 변환을 위한 패턴기반의 깊이 생성 알고리즘)

  • Han, Chan-Hee;Kang, Hyun-Soo;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.31-39
    • /
    • 2015
  • 2D-to-3D video conversion vests 3D effects in a 2D video by generating stereoscopic views using depth cues inherent in the 2D video. This technology would be a good solution to resolve the problem of 3D content shortage during the transition period to the full ripe 3D video era. In this paper, a low-complexity depth generation method for 2D-to-3D video conversion is presented. For temporal consistency in global depth, a pattern-based depth generation method is newly introduced. A low-complexity refinement algorithm for local depth is also provided to improve 3D perception in object regions. Experimental results show that the proposed method outperforms conventional methods in terms of complexity and subjective quality.

Generation of Stereoscopic Image from 2D Image based on Saliency and Edge Modeling (관심맵과 에지 모델링을 이용한 2D 영상의 3D 변환)

  • Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.368-378
    • /
    • 2015
  • 3D conversion technology has been studied over past decades and integrated to commercial 3D displays and 3DTVs. The 3D conversion plays an important role in the augmented functionality of three-dimensional television (3DTV), because it can easily provide 3D contents. Generally, depth cues extracted from a static image is used for generating a depth map followed by DIBR (Depth Image Based Rendering) rendering for producing a stereoscopic image. However except some particular images, the existence of depth cues is rare so that the consistent quality of a depth map cannot be accordingly guaranteed. Therefore, it is imperative to make a 3D conversion method that produces satisfactory and consistent 3D for diverse video contents. From this viewpoint, this paper proposes a novel method with applicability to general types of image. For this, saliency as well as edge is utilized. To generate a depth map, geometric perspective, affinity model and binomic filter are used. In the experiments, the proposed method was performed on 24 video clips with a variety of contents. From a subjective test for 3D perception and visual fatigue, satisfactory and comfortable viewing of 3D contents was validated.

Improvement of 3D Stereoscopic Perception Using Depth Map Transformation (깊이맵 변환을 이용한 3D 입체감 개선 방법)

  • Jang, Seong-Eun;Jung, Da-Un;Seo, Joo-Ha;Kim, Man-Bae
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.916-926
    • /
    • 2011
  • It is well known that high-resolution 3D movie contents frequently do not deliver the identical 3D perception to low-resolution 3D images. For solving this problem, we propose a novel method that produces a new stereoscopic image based on depth map transformation using the spatial complexity of an image. After analyzing the depth map histogram, the depth map is decomposed into multiple depth planes that are transformed based upon the spatial complexity. The transformed depth planes are composited into a new depth map. Experimental results demonstrate that the lower the spatial complexity is, the higher the perceived video quality and depth perception are. As well, visual fatigue test showed that the stereoscopic images deliver less visual fatigue.

Feature-based Disparity Correction for the Visual Discomfort Minimization of Stereoscopic Video Camera (입체영상의 시각 피로 최소화를 위한 특징기반 시차 보정)

  • Jung, Eun-Kyung;Kim, Chang-Il;Baek, Seung-Hae;Park, Soon-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.77-87
    • /
    • 2011
  • In this paper, we propose a disparity correction technique to reduce the inherent visual discomfort while watching stereoscopic videos. The visual discomfort must be solved for commercial 3D display systems to provide natural stereoscopic videos to human eyes. The proposed disparity correction technique consists of horizontal and vertical disparity corrections. The horizontal disparity correction is implemented by controlling the depth budget of stereoscopic video using the geometric relations of a stereoscopic camera system. In addition, the vertical disparity correction is implemented by using a feature-based stereo matching algorithm. Conventional vertical disparity corrections have been done by only using camera calibration parameters, which still cause systematic errors in vertical disparities. In this paper, we minimize the vertical disparity as small as possible by using a feature-based correction algorithm. Through the comparisons of conventional feature-based correction algorithms, we analyze the performance of the proposed technique.

Stereoscopic Video Compositing with a DSLR and Depth Information by Kinect (키넥트 깊이 정보와 DSLR을 이용한 스테레오스코픽 비디오 합성)

  • Kwon, Soon-Chul;Kang, Won-Young;Jeong, Yeong-Hu;Lee, Seung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.920-927
    • /
    • 2013
  • Chroma key technique which composes images by separating an object from its background in specific color has restrictions on color and space. Especially, unlike general chroma key technique, image composition for stereo 3D display requires natural image composition method in 3D space. The thesis attempted to compose images in 3D space using depth keying method which uses high resolution depth information. High resolution depth map was obtained through camera calibration between the DSLR and Kinect sensor. 3D mesh model was created by the high resolution depth information and mapped with RGB color value. Object was converted into point cloud type in 3D space after separating it from its background according to depth information. The image in which 3D virtual background and object are composed obtained and played stereo 3D images using a virtual camera.

Subjective Video Quality Comparison of 3D Display Monitors (3D 디스플레이 모니터의 주관적 화질 상관도 비교)

  • Youn, Sungwook;Ok, Jiheon;Yim, Donghyun;Han, Taehwan;Lee, Chulhee
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.416-424
    • /
    • 2013
  • Recently, efforts have been made to develop international standards related to 3DTV quality assessment underway in International Telecommunication Union and Video Quality Experts Group. Unlike conventional 2D displays, there are several types of 3D display monitors: passive glasses, active glasses and auto-stereoscopic. In this paper, we performed subjective video quality tests using various 3D display monitors, in order to examine whether these display monitors can produce consistent perceptual video quality scores for processed video sequences. The experimental results show that the subjective scores of those 3D monitors are highly correlated and it appears that similar subjective scores will be obtained even when different types of 3D displays are used.

Changes of visual discomfort depending on velocity of lateral motion and motion-in-depth in stereoscopic images (양안식 영상에서 깊이 방향 모션과 수평 방향 모션 속도에 의한 시각적 불편함의 변화)

  • Lee, Seong-Il;Jung, Yong Ju;Sohn, Hosik;Ro, Yong Man;Park, Hyun Wook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.4-7
    • /
    • 2010
  • 3D 콘텐츠에 대한 관심이 증가함에 따라 3D 시청 및 제작에 대한 가이드라인의 필요성도 함께 증가하고 있다. 3D 안정 시청 가이드 라인은 3D 시청으로 인한 시청자의 시각적 불쾌감이나 피로감을 방지하는데 목적을 두고 있으며, 최근 일본의 3DC에서는 과도한 수렴-조절 불일치를 방지하기 위해 양안 시차 $1^{\circ}$를 쾌적 시차 범위로 권고하고 있다. 하지만 이 쾌적 시차는 절대적인 수치가 아니며, 콘텐츠의 특성 및 시청 조건에 따라 변하는 것으로 추정된다. 본 논문에서는 쾌적 시차를 갖는 3D 영상 콘텐츠에서 객체의 모션으로 인해 양안시차가 시공간적으로 변할 때, 야기되는 시각적 불편함의 변화에 대하여 관찰한다. 특히, 깊이 방향 모션 및 수평 방향 모션에서 객체의 속도 변화에 대한 시각적 피로감의 정도를 주관적 평가를 통하여 측정한다.

  • PDF

Stereo Audio Matched with 3D Video (3D영상에 정합되는 스테레오 오디오)

  • Park, Sung-Wook;Chung, Tae-Yun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.153-158
    • /
    • 2011
  • This paper presents subjective experimental results to understand how audio should be changed when a video clip is watched in 3D than 2D. This paper divided auditory perceptual information into two categories; distance and azimuth that a sound source contributes mostly, and spaciousness that scene or environment contribute mostly. According to the experiment for distance and azimuth, i.e. sound localization, we found that distance and azimuth of sound sources were magnified when heard with 3D than 2D video. This lead us to conclude 3D sound for localization should be designed to have more distance and azimuth than 2D sound. Also we found 3D sound are preferred to be played with not only 3D video clip but also 2D video clip. According to the experiment for spaciousness, we found people prefer sound with more reverberation when they watch 3D video clips than 2D video clips. This can be understood that 3D video provides more spacial information than 2D video. Those subjective experimental results can help audio engineer familiar with 2D audio to create 3D audio, and be fundamental information of future research to make 2D to 3D audio conversion system. Furthermore when designing 3D broadcasting system with limited bandwidth and with 2D TV supportive, we propose to consider transmitting stereoscopic video, audio with enhanced localization, and metadata for TV sets to generate reverberation for spaciousness.