• 제목/요약/키워드: 3D Stereoscopic Images

Search Result 222, Processing Time 0.036 seconds

Improvement of 3D Stereoscopic Perception Using Depth Map Transformation (깊이맵 변환을 이용한 3D 입체감 개선 방법)

  • Jang, Seong-Eun;Jung, Da-Un;Seo, Joo-Ha;Kim, Man-Bae
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.916-926
    • /
    • 2011
  • It is well known that high-resolution 3D movie contents frequently do not deliver the identical 3D perception to low-resolution 3D images. For solving this problem, we propose a novel method that produces a new stereoscopic image based on depth map transformation using the spatial complexity of an image. After analyzing the depth map histogram, the depth map is decomposed into multiple depth planes that are transformed based upon the spatial complexity. The transformed depth planes are composited into a new depth map. Experimental results demonstrate that the lower the spatial complexity is, the higher the perceived video quality and depth perception are. As well, visual fatigue test showed that the stereoscopic images deliver less visual fatigue.

A Method of Frame Synchronization for Stereoscopic 3D Video (스테레오스코픽 3D 동영상을 위한 동기화 방법)

  • Park, Youngsoo;Kim, Dohoon;Hur, Namho
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.850-858
    • /
    • 2013
  • In this paper, we propose a method of frame synchronization for stereoscopic 3D video to solve the viewing problem caused by synchronization errors between a left video and a right video using the temporal frame difference image depending on the movement of objects. Firstly, we compute two temporal frame difference images from the left video and the right video which are corrected the vertical parallax between two videos using rectification, and calculate two horizontal projection profiles of two temporal frame difference images. Then, we find a pair of synchronized frames of the two videos by measuring the mean of absolute difference (MAD) of two horizontal projection profiles. Experimental results show that the proposed method can be used for stereoscopic 3D video, and is robust against Gaussian noise and video compression by H.264/AVC.

Non-glasses Stereoscopic 3D Floating Hologram System using Polarization Technique

  • Choi, Pyeongho;Choi, Yoonhee;Park, Misoo;Kwon, Soonchul;Lee, Seunghyun
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2019
  • The image projected onto the screen of the floating hologram is no more than a two-dimensional image. Although it creates an illusion that an object appears to float in space as it moves around while showing its different parts. This paper has proposed a novel method of floating 3D hologram display to view stereoscopic three-dimensional images without putting on glasses. The system is comprised of a sharkstooth scrim screen, projector, polarizing filter for the projector, and a polarizing film to block the image projected from the sham screen. As part of the polarization characteristics, the background image and the front object have completely been separated from each other with the stereoscopic 3D effect successfully implemented by the binocular disparity caused by the distance between the two screens.

PARALLAX ADJUSTMENT FOR REALISTIC 3D STEREO VIEWING OF A SINGLE REMOTE SENSING IMAGE

  • Kim, Hye-Jin;Choi, Jae-Wan;Chang, An-Jin;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.452-455
    • /
    • 2007
  • 3D stereoscopic viewing of large scale imagery, such as aerial photography and satellite images, needs different parallaxes relative to the display scale. For example, when a viewer sees a stereoscopic image of aerial photography, the optimal parallax of its zoom-in image should be smaller than that of its zoom-out. Therefore, relative parallax adjustment according to the display scale is required. Merely adjusting the spacing between stereo images is not appropriate because the depths of the whole image are either exaggerated or reduced entirely. This paper focuses on the improving stereoscopic viewing with a single remote sensing image and a digital surface model (DSM). We present the parallax adjustment technique to maximize the 3D realistic effect and the visual comfort. For remote sensing data, DSM height value can be regarded as disparity. There are two possible kinds of methods to adjust the relative parallax with a single image performance. One is the DSM compression technique: the other is an adjustment of the distance between the original image and its stereo-mate. In our approach, we carried out a test to evaluate the optimal distance between a single remote sensing image and its stereo-mate, relative to the viewing scale. Several synthetic stereo-mates according to certain viewing scale were created using a parallel projection model and their anaglyphs were estimated visually. The occlusion of the synthetic stereo-mate was restored by the inpainting method using the fields of experts (FoE) model. With the experiments using QuickBird imagery, we could obtain stereoscopic images with optimized parallax at varied display scales.

  • PDF

3D Stereoscopic Augmented Reality with a Monocular Camera (단안카메라 기반 삼차원 입체영상 증강현실)

  • Rho, Seungmin;Lee, Jinwoo;Hwang, Jae-In;Kim, Junho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.3
    • /
    • pp.11-20
    • /
    • 2016
  • This paper introduces an effective method for generating 3D stereoscopic images that gives immersive 3D experiences to viewers using mobile-based binocular HMDs. Most of previous AR systems with monocular cameras have a common limitation that the same real-world images are provided to the viewer's eyes without parallax. In this paper, based on the assumption that viewers focus on the marker in the scenario of marker based AR, we recovery the binocular disparity about a camera image and a virtual object using the pose information of the marker. The basic idea is to generate the binocular disparity for real-world images and a virtual object, where the images are placed on the 2D plane in 3D defined by the pose information of the marker. For non-marker areas in the images, we apply blur effects to reduce the visual discomfort by decreasing their sharpness. Our user studies show that the proposed method for 3D stereoscopic image provides high depth feeling to viewers compared to the previous binocular AR systems. The results show that our system provides high depth feelings, high sense of reality, and visual comfort, compared to the previous binocular AR systems.

A Study on 3D Stereoscopic Video Production (3D 입체영상 제작방법에 관한 연구)

  • Choi, Young-Geun;Kim, Jong-Chan;Kim, Jong-Il;Kim, Chee-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.360-362
    • /
    • 2010
  • In this paper, the next generation of digital video media attention to the 3D digital stereoscopic images can be most easily produced and minimize the cost for technology that can be made three-dimensional imaging technique, one of the leaf anaglyph research on methods through the low cost of the optimal representation of the three-dimensional stereoscopic images, and enjoy watching, a technique is proposed.

  • PDF

Development of DirectX-based Stereoscopic Image Authoring Tool for Immersive e-Book Production (몰입형 e-Book 제작을 위한 DirectX기반 입체 영상 저작도구 개발)

  • Lee, Keunhyung;Park, Jinwoo;Kim, Jinmo
    • Journal of Digital Contents Society
    • /
    • v.17 no.1
    • /
    • pp.23-31
    • /
    • 2016
  • This study aims to develop a stereoscopic image authoring tool to effectively produce e-Book content that enhances user's sense of immersion in 3D environments. The proposed authoring tool consists of three core systems; 3D object editing, stereoscopic image, and image media production systems. First, the object editing system arranges and produces diverse objects that constitute virtual 3D spaces to fit the purpose of the content. In this case, commercial graphic authoring tools are utilized to design efficient data structures that can include produced external models. In addition, the material and textures of objects are made to be revisable and editable into the form wanted by the user. Thereafter, a stereoscopic image system will be implemented to produce the generated virtual scenes into stereoscopic images. This study uses the Anaglyph method so that the user can implement and use stereoscopic image scenes more easily. This method include functions to change the color of stereo cameras and control depth scaling. Finally, an image media production system will be implemented that will enable producing the produced stereoscopic images into single images or videos so that they can be effectively utilized in e-Book content.

A Correction of Color Temperature and Consistency for 3D Stereoscopic Images (3D 입체영상을 위한 색온도와 색 일치 보정)

  • Kim, Jeong-Yeop;Kim, Sang-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.139-146
    • /
    • 2011
  • The color correction is the important process of influencing on the picture quality of the 3D stereoscopic images. Existing colorcorrecting methods handle the processing intensifying a correspondence among a left and right image using a histogram based on any one side. In case of color correction based on a histogram, it is difficult to correct tone of image, because the color temperature is not converted enough. And in this paper, the color temperature correction and color consistency correction is proposed without using histogram. The proposed color correction method by color temperature gives 3 in CIE-${\Delta}E$ for each pixel on the images captured with same illuminants and the conventional gives similar results. For color consistency, the proposed gives 9 in CIE-${\Delta}E$ on the images captured with different illuminants while the conventional gives 18. The proposed method shows better results than the conventional in color consistency processing.

Visual Discomfort Analysis of Binocular Depth Change on 3D Stereoscopic Imaging (입체영상의 양안 깊이 변화에 따른 시청 피로도 분석)

  • Kim, Nam-Gyu
    • Journal of Digital Contents Society
    • /
    • v.16 no.1
    • /
    • pp.127-135
    • /
    • 2015
  • The development of stereoscopic display hardwares and 3D authoring softwares expands its application areas from particular virtual simulation applications to general movies, games, advertising applications. However, the binocular-based 3D stereoscopic images cause fatigue to viewers. Recent performed many research results about the binocular stereoscopy's depth perception and viewers' fatigue are derived from experimental users studies. In some results, watching and making guidelines for 3D stereoscopic imaging contents are introduced. The 3D stereoscopic-related contents have the contradictory aspects, which are audiences' pursuit of a tolerable minimum fatigue and producer's its of excessive depth changes for providing viewers' immersion. This paper provides user experiments and analysis data in aspects of 3D depth changes. For use of producers, a safety zone and translational velocity of 3D depth changes are introduced. Also, on the viewer side, we present the depth change adaptation time by using an EEG device.

High efficient vision system for volumetric display (입체영상 디스플레이를 위한 고효율 비젼 시스템)

  • Kim, Sang Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5130-5133
    • /
    • 2013
  • Volumetric display has many applications recently in education, 3D movie, medical images but these applications have several problems that need to be overcome. Volumetric display may process a amount of visual data and design the high efficient vision system for realtime display. The stereo data for volumetric display estimated the disparity vectors from the stereoscopic sequences has been transmitted the disparity vectors, motion vectors and residual images with the reference images, and the stereoscopic sequences have been reconstructed at the receiver for 3D display. Central issue for efficient 3D display lies in selecting an appropriate stereo matching with robust vision system. In this paper, high efficient vision system is proposed for efficient stereo image matching and the experimental results represent high efficiency for proposed 3D display system.