• Title/Summary/Keyword: 3D Stereoscopic Images

Search Result 222, Processing Time 0.04 seconds

A Study on the Stereo Infrared Image Enhancement (스테레오 적외선영상의 이미지 향상에 관한 연구)

  • 류재훈;김윤호;류광렬
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.171-174
    • /
    • 2003
  • This paper is a study on the 3D infrared image enhancement with Stereoscopic algorithm on still infrared image. The adapted stereo method is that the depth is extracted by comparison with right-left image, and the enhanced 3D infrared image by matching based on feature is realized. As the result of experiment this method forced the more smooth edge lines of 3D infrared images.

  • PDF

Stereoscopic Video Compositing with a DSLR and Depth Information by Kinect (키넥트 깊이 정보와 DSLR을 이용한 스테레오스코픽 비디오 합성)

  • Kwon, Soon-Chul;Kang, Won-Young;Jeong, Yeong-Hu;Lee, Seung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.920-927
    • /
    • 2013
  • Chroma key technique which composes images by separating an object from its background in specific color has restrictions on color and space. Especially, unlike general chroma key technique, image composition for stereo 3D display requires natural image composition method in 3D space. The thesis attempted to compose images in 3D space using depth keying method which uses high resolution depth information. High resolution depth map was obtained through camera calibration between the DSLR and Kinect sensor. 3D mesh model was created by the high resolution depth information and mapped with RGB color value. Object was converted into point cloud type in 3D space after separating it from its background according to depth information. The image in which 3D virtual background and object are composed obtained and played stereo 3D images using a virtual camera.

A Study on Developing a High-Resolution Digital Elevation Model (DEM) of a Tunnel Face (터널 막장면 고해상도 DEM(Digital Elevation Model) 생성에 관한 연구)

  • Kim, Kwang-Yeom;Kim, Chang-Yong;Baek, Seung-Han;Hong, Sung-Wan;Lee, Seung-Do
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.931-938
    • /
    • 2006
  • Using high resolution stereoscopic imaging system three digital elevation model of tunnel face is acquired. The images oriented within a given tunnel coordinate system are brought into a stereoscopic vision system enabling three dimensional inspection and evaluation. The possibilities for the prediction ahead and outside of tunnel face have been improved by the digital vision system with 3D model. Interpolated image structures of rock mass between subsequent stereo images will enable to model the rock mass surrounding the opening within a short time at site. The models shall be used as input to numerical simulations on site, comparison of expected and encountered geological conditions, and for the interpretation of geotechnical monitoring results.

  • PDF

Multiview Stereoscopic Display based on Volume Holographic Memory (체적 홀로그래픽 메모리를 이용한 다시점 스테레오스코픽 디스플레이)

  • 이승현;손광철;심원섭;양훈기;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.688-695
    • /
    • 2000
  • We present a multi-view autostereoscopic display system based on volume holographic storage technique. In this proposed system, the interference pattern of spatial multiplexed plane reference and angular multiplexed plane object beams are recorded into a photorefractive crystal, which plays a role of guiding object beams of multi-view images into the desired persfective directions. For reconstruction, object beams containing the desired multi-view image information, which satisfy Bragg matching condition, are illuminated in the time-division multiplexed manner onto the crystal. Then multiple stereoscopic images are Projected to the display plane for autostereoscopic 3D viewing.

  • PDF

Acceleration Method for Integral Imaging Generation of Volume Data based on CUDA (CUDA를 기반한 볼륨데이터의 집적영상 생성을 위한 고속화 기법)

  • Park, Chan;Jeong, Ji-Seong;Park, Jae-Hyeung;Kwon, Ki-Chul;Kim, Nam;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.9-17
    • /
    • 2011
  • Recently, with the advent of stereoscopic 3D TV, the activation of 3D stereoscopic content is expected. Research on 3D auto stereoscopic display has been carried out to relieve discomfort of 3D stereoscopic display. In this research, it is necessary to generate the elemental image from a lens array. As the number of lens in a lens array is increased, it takes a lot of time to generate the elemental image, and it will take more time for a large volume data. In order to improve the problem, in this paper, we propose a method to generate the elemental image by using OpenCL based on CUDA. We perform our proposed method on PC environment with one of Tesla C1060, Geforce 9800GT and Quadro FX 3800 graphics cards. Experimental results show that the proposed method can obtain almost 20 times better performance than recent research result[11].

Visual Fatigue Caused by Dolly shot in Stereoscopic Images (입체영상에서 달리샷이 주는 시각 피로도)

  • Kwon, O-Young;Seo, Chang-Ho;Ko, Min-Woo;Youn, Joo-Sang;Seo, Jin-Seok;Oh, Sei-Woong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.197-199
    • /
    • 2015
  • 3D 입체영상 촬영에서는 기존의 2D 영상과 다르게 깊이영역에 대한 시청자의 시각 피로에 주의해야 한다. 입체영상 촬영단계에서 시청자의 불편함을 최소화하기 위해 제작자들은 2D 촬영 방식과는 다르게 안정적인 카메라 촬영기법만을 사용한다. 본 연구는 입체영상 제작자들이 안전하게 다양한 촬영기법을 활용할 수 있도록 도움을 줄 수 있는 가이드라인 제작을 위해 시작되었으며, 그 결과의 일부로 본 논문에서는 촬영기법 중 달리샷에 대한 시각 피로도를 보여주고자 한다.

  • PDF

Resolution of Temporal-Multiplexing and Spatial-Multiplexing Stereoscopic Televisions

  • Kim, Joohwan;Banks, Martin S.
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.34-44
    • /
    • 2017
  • Stereoscopic (S3D) displays present different images to the two eyes. Temporal multiplexing and spatial multiplexing are two common techniques for accomplishing this. We compared the effective resolution provided by these two techniques. In a psychophysical experiment, we measured resolution at various viewing distances on a display employing temporal multiplexing, and on another display employing spatial multiplexing. In another experiment, we simulated the two multiplexing techniques on one display and again measured resolution. The results show that temporal multiplexing provides greater effective resolution than spatial multiplexing at short and medium viewing distances, and that the two techniques provide similar resolution at long viewing distance. Importantly, we observed a significant difference in resolution at the viewing distance that is generally recommended for high-definition television.

Development of 3D Display System for Video-guide Operation

  • Honda, Toshio;Suzuki, Kou;Kuboshima, Yasuhito;Shiina, Tatsuo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1799-1802
    • /
    • 2007
  • In the constructed auto-stereoscopic display system for one observer. 1.stereoscopic images displayed on a special LCD are made on a large concave mirror. 2.The view-zone limiting aperture is set between the projection lens and the concave mirror. 3.The real image of the aperture is made at the observer's eye position by the concave mirror. 4.The observer's eye-position tracking of the view-zone is realized. 5.At same time, stereoscopic image changes automatically according to the eye position of the observer.

  • PDF

3-D Velocity Fields Measurements of Propeller Wake Using a Stereoscopic PIV (Stereoscopic PIV기법을 이용한 프로펠러 후류의 3차원 속도장 측정)

  • Paik Bu-Geun;Lee Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.185-188
    • /
    • 2002
  • The objective of present paper is to apply a stereoscopic PIV(Particle Image Velocimetry) techiique for measuring the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. It is essential to measure 3-components velocity fields for the investigation of complicated near-wake behind the propeller. The out-of-plane velocity component was measured using the particle images captured by two CCD cameras in the angular displacement configuration.400 instantaneous velocity fields were measured for each of few different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}\;and\;54^{\circ}$. They were ensemble averaged to investigate the spatial evolution of the propeller wake in the region ranged from the trailing edge to the region of one propeller diameter(D) downstream. The phase-averaged velocity fields show the viscous wake formed by the boundary layers developed along the blade surfaces. Tip vortices were formed periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component has large values at the tip and trailing votices. With going downstream, the axial turbulence intensity and the strength of tip vortices were decreased due to the visous dissipation, turbulence diffusion and blade-to-blade interaction. The blade wake traveling at higher speed with respect to the tip vortex overtakes and interacts with tip vortices formed from the previous blade. Tip vortices are separated from the wake and show oscillating trajectory

  • PDF

Automated Image Alignment and Monitoring Method for Efficient Stereoscopic 3D Contents Production (스테레오스코픽 3D 콘텐츠 제작의 효율성 향상을 위한 자동 영상정렬 및 모니터링 기법)

  • Kim, Jae-In;Kim, Taejung
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.205-214
    • /
    • 2014
  • Minimization of visual fatigue is important for production of high quality stereoscopic 3D contents. Vertical disparity of stereo images occurred during contents production is considered as the main factor of visual fatigue. To ensure correct stereoscopy vertical disparity needs to be eliminated. In this paper, a method for automated image alignment was proposed for Stereoscopic 3D contents generation and post-processing steps. The proposed method consists of two parts: rectification for image alignment and camera motion detection. The proposed method showed that its rectification performance was the most superior among the existing methods tested and that camera motion detection had a success rate of 98.35%. Through these evaluations, we confirmed that the proposed method can be effectively applied to 3D contents production.