• Title/Summary/Keyword: 3D Shape display

Search Result 85, Processing Time 0.029 seconds

Wire frame drive unit ofa SMA-based 3D shape display (SMA을 이용한 3차원 형상제시기의 와이어프레임 구동 유닛)

  • Chu Y.J.;Kim Y.M.;Song J.B.;Park S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.439-440
    • /
    • 2006
  • This research proposes a novel method of shape display to present 3-dimensional objects. Shape displays allow us to feel the actual volume of the object, unlike conventional 2D visual displays of 3D objects. The proposed method employs a wire frame structure to present 3D objects. The wire frame is composed of small units driven by shape memory alloy(SMA) actuators. The drive unit is analogous to the agonist-antagonist system of animal musculoskeletal systems, where the SMA actuators serve as agonist and antagonist muscles. The force in the SMA actuator is controlled by electrical current. The drive unit is equipped with the locking mechanism so that it can sustain the external force exerted by the user as well as the own weight of the wire frame structure. By controlling the current into the SMA actuator and locking mechanism, we call control the angle of the drive unit. A chain of drive units enables presentation of 2 dimensional objects. 3 dimensional presentations are possible by collecting the chains of drive units.

  • PDF

Development of SMA-based Wireframe Structure for 2D Shape Display (2차원 형상 제시를 위한 SMA에 기반한 와이어프레임 구조의 개발)

  • Chu, Yong-Ju;Song, Jae-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.82-88
    • /
    • 2008
  • This paper proposes a novel method of 2 dimensional shape display. Shape displays allow us to feel tile actual volume of the object, unlike conventional 2D visual displays of 3D objects. The proposed method employs a wireframe structure to present 2D or 3D objects. The wireframe is composed of small units driven by shape memory alloy (SMA) actuators. The drive unit is analogous to the agonist-antagonist system of animal musculoskeletal systems, where the SMA actuators serve as agonist and antagonist muscles. The force in the SMA actuator is controlled by electrical current. The drive unit is equipped with the locking mechanism so that it can sustain the external force exerted by the user as well as the own weight of the wireframe structure. By controlling the current into the SMA actuator and locking mechanism, we can control the angle of the drive unit. A chain of drive units enables presentation of 2 dimensional objects. 3 dimensional presentations are possible by collecting the chains of drive units.

3D Shape Recovery Using Image Focus through Nonlinear Total Variation (비선형 전변동을 이용한 초점거리 변화 기반의 3 차원 깊이 측정 방법)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.27-32
    • /
    • 2013
  • Shape From Focus (SFF) is a passive optical technique to recover 3D structure of an object that utilizes focus information from 2D images of the object taken at different focus levels. Mostly, SFF methods use a single focus measure to compute image focus quality of each pixel in the image sequence. However, it is difficult to recover accurate 3D shape using a single focus measure, as different focus measures perform differently in diverse conditions. In this paper, a nonlinear Total Variation (TV) based approach is proposed for 3D shape recovery. To improve the result of surface reconstruction, several initial depth maps are obtained using different focus measures and the resultant 3D shape is obtained by diffusing them through TV. The proposed method is tested and evaluated by using image sequences of synthetic and real objects. The results and comparative analysis demonstrate the effectiveness of our method.

Enhancing Focus Measurements in Shape From Focus Through 3D Weighted Least Square (3차원 가중최소제곱을 이용한 SFF에서의 초점 측도 개선)

  • Mahmood, Muhammad Tariq;Ali, Usman;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.66-71
    • /
    • 2019
  • In shape from focus (SFF) methods, the quality of image focus volume plays a vital role in the quality of 3D shape reconstruction. Traditionally, a linear 2D filter is applied to each slice of the image focus volume to rectify the noisy focus measurements. However, this approach is problematic because it also modifies the accurate focus measurements that should ideally remain intact. Therefore, in this paper, we propose to enhance the focus volume adaptively by applying 3-dimensional weighted least squares (3D-WLS) based regularization. We estimate regularization weights from the guidance volume extracted from the image sequences. To solve 3D-WLS optimization problem efficiently, we apply a technique to solve a series of 1D linear sub-problems. Experiments conducted on synthetic and real image sequences demonstrate that the proposed method effectively enhances the image focus volume, ultimately improving the quality of reconstructed shape.

A Study on Square Pore Shape Discrimination Model of Scaffold Using Machine Learning Based Multiple Linear Regression (다중 선형 회귀 기반 기계 학습을 이용한 인공지지체의 사각 기공 형태 진단 모델에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.59-64
    • /
    • 2020
  • In this paper, we found the solution using data based machine learning regression method to check the pore shape, to solve the problem of the experiment quantity occurring when producing scaffold with the 3d printer. Through experiments, we learned secured each print condition and pore shape. We have produced the scaffold from scaffold pore shape defect prediction model using multiple linear regression method. We predicted scaffold pore shapes of unsecured print condition using the manufactured scaffold pore shape defect prediction model. We randomly selected 20 print conditions from various predicted print conditions. We print scaffold five times under same print condition. We measured the pore shape of scaffold. We compared printed average pore shape with predicted pore shape. We have confirmed the prediction model precision is 99 %.

3D Shape Recovery from Image Focus using Gaussian Process Regression (가우시안 프로세스 회귀분석을 이용한 영상초점으로부터의 3차원 형상 재구성)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.19-25
    • /
    • 2012
  • The accuracy of Shape From Focus (SFF) technique depends on the quality of the focus measurements which are computed through a focus measure operator. In this paper, we introduce a new approach to estimate 3D shape of an object based on Gaussian process regression. First, initial depth is estimated by applying a conventional focus measure on image sequence and maximizing it in the optical direction. In second step, input feature vectors consisting of eginvalues are computed from 3D neighborhood around the initial depth. Finally, by utilizing these features, a latent function is developed through Gaussian process regression to estimate accurate depth. The proposed approach takes advantages of the multivariate statistical features and covariance function. The proposed method is tested by using image sequences of various objects. Experimental results demonstrate the efficacy of the proposed scheme.

Measurement of the Perceptual Distortion of 3D Depth/Shape in Realistic Broadcasting (실감 방송에서의 3D 깊이/모양 지각감 왜곡의 측정)

  • Li, Hyung-Chul O.
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.210-218
    • /
    • 2009
  • The 3D shape as well as the depth of an object presented on a 3D display is perceptually distorted depending on viewing distance. It is quite undesirable that different observers perceive different depth and shape from an object displayed on a 3D monitor. To resolve the problem of perceptual distortion of 3D depth and shape, the degree of the distortion should be measured appropriately. As a basis for resolving these problems, the present research suggests an instrument for measuring the degree of the perceptual distortion of 3D depth and shape.

Type Classification and Shape Display of Brazing Defect in Heat Exchanger (열교환기 브레이징 결함의 유형 분류 및 형상 디스플레이)

  • Kim, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.171-176
    • /
    • 2013
  • X-ray cross-sectional image-based inspection technique is one of the most useful methods to inspect the brazing joints of heat exchanger. Through X-ray cross-sectional image acquisition, image processing, and defect inspection, the defects of brazing joints can be detected. This paper presents a method to judge the type of detected defects automatically, and to display them three-dimensionally. The defect type is classified as unconnected defect, void, and so on, based on location, size, and shape information of defect. Three-dimensional display which is realized using OpenGL (Open Graphics Library) will be helpful to understand the overall situation including location, size, shape of the defects in a test object.

Real-time SMA control for wire frame-based 3D shape display (와이어프레임 기반의 3차원 형상제시기의 실시간 SMA 제어)

  • Kim Y.M.;Chu Y.J.;Song J.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.295-296
    • /
    • 2006
  • We developed wire frame drive unit based on SMA for the 3D Shape display. Our basic concept is wire frame combination connected with a chain form which can create various shapes and it compared with pin array mechanism which is not able to display mushroom shape. It imitates antagonist mechanism of human musculoskeletal system. we create similar motion using repair-relaxation mechanism and locking mechanism by SMA. Therefore, in this paper, we propose SMA control solution for actuating repair-relaxation mechanism and locking mechanism. In our control system. we use optical sensor and quantitative angle between wire frames for closed loop control. And we supply amplified current for SMA by circuit composed of transistor and apply PWM signal to circuit for efficient control. So, wire frame drive unit enable diversity angle control based on sensor data. And then combination of wire frame drive units will create various objects.

  • PDF

3D Surface Reconstruction by Combining Focus Measures through Genetic Algorithm (유전 알고리즘 기반의 초점 측도 조합을 이용한 3차원 표면 재구성 기법)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.23-28
    • /
    • 2014
  • For the reconstruction of three-dimensional (3D) shape of microscopic objects through shape from focus (SFF) methods, usually a single focus measure operator is employed. However, it is difficult to compute accurate depth map using a single focus measure due to different textures, light conditions and arbitrary object surfaces. Moreover, real images with diverse types of illuminations and contrasts lead to the erroneous depth map estimation through a single focus measure. In order to get better focus measurements and depth map, we have combined focus measure operators by using genetic algorithm. The resultant focus measure is obtained by weighted sum of the output of various focus measure operators. Optimal weights are obtained using genetic algorithm. Finally, depth map is obtained from the refined focus volume. The performance of the developed method is then evaluated by using both the synthetic and real world image sequences. The experimental results show that the proposed method is more effective in computing accurate depth maps as compared to the existing SFF methods.