• 제목/요약/키워드: 3D SVM

검색결과 62건 처리시간 0.03초

A Novel Method for Hand Posture Recognition Based on Depth Information Descriptor

  • Xu, Wenkai;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권2호
    • /
    • pp.763-774
    • /
    • 2015
  • Hand posture recognition has been a wide region of applications in Human Computer Interaction and Computer Vision for many years. The problem arises mainly due to the high dexterity of hand and self-occlusions created in the limited view of the camera or illumination variations. To remedy these problems, a hand posture recognition method using 3-D point cloud is proposed to explicitly utilize 3-D information from depth maps in this paper. Firstly, hand region is segmented by a set of depth threshold. Next, hand image normalization will be performed to ensure that the extracted feature descriptors are scale and rotation invariant. By robustly coding and pooling 3-D facets, the proposed descriptor can effectively represent the various hand postures. After that, SVM with Gaussian kernel function is used to address the issue of posture recognition. Experimental results based on posture dataset captured by Kinect sensor (from 1 to 10) demonstrate the effectiveness of the proposed approach and the average recognition rate of our method is over 96%.

IGBT PWM Rectifier의 각상 개별제어 알고리즘에 관한 연구 (A Study on the Algorithm for Single Phase Control of IGBT PWM Rectifier)

  • 김승호;박재범;태동현;김승종;송중호;노대석
    • 한국산학기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.26-33
    • /
    • 2016
  • 최근 UPS의 효율을 높이기 위하여 무변압기형 UPS의 사용이 증가되고 있다. 하지만 무변압기형 UPS는 입 출력 구조상 문제로 인해 3상4선식의 IGBT PWM 정류기가 필요하며 이는 기존의 3상3선식 PWM 정류기의 PFC 제어기법으로는 중성선 전류 문제로 동작이 되지 않으므로 3상4선식 PWM 정류기의 특성에 맞는 적절한 PWM 제어기법이 요구되고 있다. 3상4선식 IGBT PWM 정류기의 제어를 위한 제어기법으로는 각상 개별제어 기법과 3D SVM 기법이 있지만 두 방식 모두 장단점이 존재한다. 각상 개별제어 기법은 제어가 불안정하고 3D SVM 기법은 입력 측 인덕터의 L값이 상당히 커져야하는 문제점을 가지고 있다. 따라서 본 논문에서는 기존의 각상 개별제어 방식과 d-q 제어 알고리즘을 접목시켜 동기좌표계상에서 직류로 제어하는 3상4선식 IGBT PWM 정류기 제어기법을 제안하였다. 또한 본 논문에서 제안한 3상4선식 IGBT의 PWM 정류기 제어 알고리즘을 바탕으로 시뮬레이션과 실험을 수행 하였다. 시뮬레이션을 수행한 결과, 3상4선식 IGBT PWM 정류기를 안정적으로 제어하고 중성선 전류를 줄일 수 있어, 본 논문에서 제안한 방식의 유효성을 확인하였다.

초음파 볼륨에서 웨이브렛 변환을 이용한 전립선 객체 추출 (Prostate Object Extraction in Ultrasound Volume Using Wavelet Transform)

  • 오종환;김상현;김남철
    • 전자공학회논문지SC
    • /
    • 제43권3호
    • /
    • pp.67-77
    • /
    • 2006
  • 본 논문에서는 웨이브렛 변환과 SVM 분류기를 이용하여 3차원 초음파 볼륨으로부터 전립선 객체를 추출하는 방법을 제안한다. 제안한 방법에서는 웨이브렛 변환의 수평 수직 방향의 상세 영상들의 평균치들로부터 웨이브렛 변환 모듈러스 영상을 구함으로써 잡음전력 대비 전립선 윤곽에 대한 국부 최대치들의 첨예도가 큰 모듈러스 영상을 얻을 수 있다. 또한 전립선의 밝기 변이 특성 및 전립선 내외부의 질감 차이 등을 특징으로 한 SVM 분류기를 이용함으로써 전립선 윤곽 추출의 정확도를 크게 향상시킬 수 있다. 실험 결과, 제안한 방법을 이용하여 전립선 윤곽을 찾을 경우 전문가에 의하여 추출된 윤곽과 비교하여 절대 평균 거리가 1.89로 나타났다.

작물분류에서 기계학습 및 딥러닝 알고리즘의 분류 성능 평가: 하이퍼파라미터와 훈련자료 크기의 영향 분석 (Performance Evaluation of Machine Learning and Deep Learning Algorithms in Crop Classification: Impact of Hyper-parameters and Training Sample Size)

  • 김예슬;곽근호;이경도;나상일;박찬원;박노욱
    • 대한원격탐사학회지
    • /
    • 제34권5호
    • /
    • pp.811-827
    • /
    • 2018
  • 본 연구의 목적은 다중시기 원격탐사 자료를 이용한 작물분류에서 기계학습 알고리즘과 딥러닝 알고리즘의 비교에 있다. 이를 위해 전라남도 해남군과 미국 Illinois 주의 작물 재배지를 대상으로 기계학습 알고리즘과 딥러닝 알고리즘에 대해 (1) 하이퍼파라미터와 (2) 훈련자료의 크기에 따른 영향을 비교 분석하였다. 비교 실험에는 기계학습 알고리즘으로 support vector machine(SVM)을 적용하고 딥러닝 알고리즘으로 convolutional neural network(CNN)를 적용하였다. 특히 CNN에서 2차원의 공간정보를 고려하는 2D-CNN과 시간차원을 확장한 구조의 3D-CNN을 적용하였다. 비교 실험 결과, 다양한 하이퍼파라미터를 고려해야 하는 CNN의 경우 SVM과 다르게 두 지역에서 정의된 하이퍼파라미터 값이 유사한 것으로 나타났다. 이러한 결과를 바탕으로 모델 최적화에 많은 시간이 소요되지만 최적화된 CNN 모델을 다른 지역으로 확장할 수 있는 전이학습의 적용 가능성이 높을 것으로 판단된다. 다음 훈련자료 크기에 따른 비교 실험 결과, SVM 보다 CNN에서 훈련자료 크기의 영향이 큰 것으로 나타났는데 특히 다양한 공간특성을 갖는 Illinois 주에서 이러한 경향이 두드러지게 나타났다. 또한 Illinois 주에서 3D-CNN의 분류 성능이 저하되는 것으로 나타났는데, 이는 모델 복잡도가 증가하면서 과적합의 영향이 발생한 것으로 판단된다. 즉 모델의 훈련 정확도는 높지만 다양한 공간특성이나 입력 자료의 잡음 효과 등으로 오히려 분류 성능이 저하된 것으로 나타났다. 이러한 결과는 대상 지역의 공간특성을 고려해 적절한 분류 알고리즘을 선택해야 하는 것을 의미한다. 또한 CNN에서 특히, 3D-CNN에서 일정 수준의 분류 성능을 담보하기 위해 다량의 훈련자료 수집이 필요하다는 것을 의미한다.

비대칭 멀티코어 모바일 단말에서 SVM 기반 저전력 스케줄링 기법 (SVM-based Energy-Efficient scheduling on Heterogeneous Multi-Core Mobile Devices)

  • 한민호;고영배;임성화
    • 한국산업정보학회논문지
    • /
    • 제27권6호
    • /
    • pp.69-75
    • /
    • 2022
  • 본 논문에서 비대칭 멀티 코어 구조의 스마트 모바일 단말에서 실시간성 보장과 에너지 소비량 절감을 고려한 작업 스케쥴링 기법을 제안한다. 최근 VR, AR, 3D 등 고성능 응용프로그램은 실시간과 고수준 작업이 요구된다. 스마트 단말은 배터리에 의존적이므로 높은 에너지 효율을 위해서 big.LITTLE 구조가 적용되었지만, 이를 제대로 활용하지 못함으로써 에너지 절감효과가 반감되는 문제점이 있었다. 본 논문에서는 big.LITTLE 구조의 단말에서 실시간성과 높은 에너지 효율을 높일 수 있는 비대칭 멀티코어 할당 기법을 제안한다. 이 기법은 SVM 모델을 활용해서 실제 작업의 실행시간을 예측하고 이를 통해서 에너지 소모와 실행시간을 최적화한 알고리즘을 제안한다. 상용 스마트폰에서의 비교실험을 통하여 제안기법이 기존 기법과 유사한 실행시간을 보장하면서 에너지 소비량의 절감을 보였다.

3상 계통 연계 인버터의 SVPWM을 위한 LCL-필터 설계 (Design of an LCL-Filter for Space Vector PWM in a Grid-Connected System)

  • 서승규;조용수;이교범
    • 전력전자학회논문지
    • /
    • 제21권6호
    • /
    • pp.538-541
    • /
    • 2016
  • This paper proposes an LCL-filter design for space vector pulse width modulation (SVM) in grid-connected three-phase inverter systems. Although there are a several studies in progress, the existing methods are erroneous because they do not focus on the other switching methods. This paper presents the design methodology for an LCL-filter that is optimized for SVM switching operations. The design procedure for the LCL-filter is presented step-by-step. The inverter-side inductor was determined by an analysis of the ripple components, mathematically. Based on the reactive power absorption ratio, the filter capacitor was determined. The grid-side inductor was determined by the ripple attenuation factor of the output current. Experimental results verify the validity of the design method for the LCL-filter.

Support Vector Machine Based Phoneme Segmentation for Lip Synch Application

  • Lee, Kun-Young;Ko, Han-Seok
    • 음성과학
    • /
    • 제11권2호
    • /
    • pp.193-210
    • /
    • 2004
  • In this paper, we develop a real time lip-synch system that activates 2-D avatar's lip motion in synch with an incoming speech utterance. To realize the 'real time' operation of the system, we contain the processing time by invoking merge and split procedures performing coarse-to-fine phoneme classification. At each stage of phoneme classification, we apply the support vector machine (SVM) to reduce the computational load while retraining the desired accuracy. The coarse-to-fine phoneme classification is accomplished via two stages of feature extraction: first, each speech frame is acoustically analyzed for 3 classes of lip opening using Mel Frequency Cepstral Coefficients (MFCC) as a feature; secondly, each frame is further refined in classification for detailed lip shape using formant information. We implemented the system with 2-D lip animation that shows the effectiveness of the proposed two-stage procedure in accomplishing a real-time lip-synch task. It was observed that the method of using phoneme merging and SVM achieved about twice faster speed in recognition than the method employing the Hidden Markov Model (HMM). A typical latency time per a single frame observed for our method was in the order of 18.22 milliseconds while an HMM method applied under identical conditions resulted about 30.67 milliseconds.

  • PDF

1D CNN과 기계 학습을 사용한 낙상 검출 (1D CNN and Machine Learning Methods for Fall Detection)

  • 김인경;김대희;노송;이재구
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권3호
    • /
    • pp.85-90
    • /
    • 2021
  • 본 논문에서는 고령자를 위한 개별 웨어러블(Wearable) 기기를 이용한 낙상 감지에 대해 논한다. 신뢰할 수 있는 낙상 감지를 위한 저비용 웨어러블 기기를 설계하기 위해서 대표적인 두 가지 모델을 종합적으로 분석하여 제시한다. 기계 학습 모델인 의사결정 나무(Decision Tree), 랜덤 포래스트(Random Forest), SVM(Support Vector Machine)과 심층 학습 모델인 일차원(One-Dimensional) 합성곱 신경망(Convolutional Neural Network)을 사용하여 낙상 감지 학습 능력을 정량화하였다. 또한 입력 데이터에 적용하기 위한 데이터 분할, 전처리, 특징 추출 방법 등을 고려하여 검토된 모델의 유효성을 평가한다. 실험 결과는 전반적인 성능 향상을 보여주며 심층학습 모델의 유효성을 검증한다.

An automatic detection method for lung nodules based on multi-scale enhancement filters and 3D shape features

  • Hao, Rui;Qiang, Yan;Liao, Xiaolei;Yan, Xiaofei;Ji, Guohua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.347-370
    • /
    • 2019
  • In the computer-aided detection (CAD) system of pulmonary nodules, a high false positive rate is common because the density and the computed tomography (CT) values of the vessel and the nodule in the CT images are similar, which affects the detection accuracy of pulmonary nodules. In this paper, a method of automatic detection of pulmonary nodules based on multi-scale enhancement filters and 3D shape features is proposed. The method uses an iterative threshold and a region growing algorithm to segment lung parenchyma. Two types of multi-scale enhancement filters are constructed to enhance the images of nodules and blood vessels in 3D lung images, and most of the blood vessel images in the nodular images are removed to obtain a suspected nodule image. An 18 neighborhood region growing algorithm is then used to extract the lung nodules. A new pulmonary nodules feature descriptor is proposed, and the features of the suspected nodules are extracted. A support vector machine (SVM) classifier is used to classify the pulmonary nodules. The experimental results show that our method can effectively detect pulmonary nodules and reduce false positive rates, and the feature descriptor proposed in this paper is valid which can be used to distinguish between nodules and blood vessels.

단일 24GHz FMCW 레이더 및 2D CNN을 이용하여 학습되지 않은 요구조자의 자세 추정 기법 (An Untrained Person's Posture Estimation Scheme by Exploiting a Single 24GHz FMCW Radar and 2D CNN)

  • 장경석;주준호;손초;김영억
    • 한국재난정보학회 논문집
    • /
    • 제19권4호
    • /
    • pp.897-907
    • /
    • 2023
  • 연구목적: 본 연구에서는 단일 24GHz FMCW레이더를 사용하여 수집된 적은 양의 학습데이터로 학습된 AI 모델을 사용하여 학습되지 않은 사람의 3가지 자세를 구분하고자 한다. 연구방법: 실내에서 학습 대상자들의 3가지 자세(서기, 앉기, 눕기)에 대한 FFT데이터를 수집하여 2D 이미지로 변환시킨 후 제안하는 2D CNN 모델로 학습시켜 학습에 사용되지 않은 새로운 대상자들의 자세를 잘 구분할 수 있는지 실험을 통해 정확도를 분석하였다. 연구결과: 제안하는 기법을 통해 3가지 자세의 평균 정확도가 89.99%임을 보였고, 기존의 1D CNN이나 SVM 보다 성능이 향상되었다. 결론: 실내에서 재난이 발생하는 경우 단일 FMCW 레이더와 AI 기법을 통해 요구조자의 자세를 추정하고자 하였으며, 학습되지 않은 대상자의 자세도 높은 정확도로 추정이 가능함을 실험을 통해 확인하였다.