• Title/Summary/Keyword: 3D Printing Technology

Search Result 673, Processing Time 0.032 seconds

Requirement Analysis Study for Development of 3D Printing Concrete Nozzle for FCP Manufacturing (FCP 제작용 3D 프린팅 콘크리트 노즐 개발을 위한 요구사항 분석연구)

  • Youn, Jong-Young;Kim, Ji-Hye;Kim, Hye-Kwon;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.65-66
    • /
    • 2022
  • In the construction industry, interest in technologies such as 3D Construction Printing (3DCP) is increasing, and research is being conducted continuously. In the case of atypical architecture, different shapes must be implemented, and the introduction of 3D printing technology is intended to solve it. Our researchers are conducting research to produce Free-form Concrete Panel (FCP). It automatically manufactures the FCP's formwork without any error with the design shape. At this time, the concrete nozzle based on the 3D printing technology is developed and the concrete is precisely extruded into the manufactured form to prevent the deformation of the formwork that can occur due to the concrete load. Therefore, in this study, the requirements for the development of 3D printing concrete nozzles for FCP manufacturing are analyzed. Based on the analyzed requirements, the first nozzle was developed. Such equipment is easy to shorten construction period and cost reduction in the atypical construction field, and is expected to be utilized as basic 3D printing equipment.

  • PDF

Application of 3D Printing Technology in Seismic Physical Modeling (탄성파 축소모형 실험에서의 3D 프린팅 기술 활용)

  • Kim, Daechul;Shin, Sungryul;Chung, Wookeen;Shin, Changsoo;Lim, Kyoungmin
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.56 no.3
    • /
    • pp.260-269
    • /
    • 2019
  • The application of 3D printing technology in seismic physical modeling was investigated and the related domestic research was conducted. First, seven types of additive manufacturing methods were evaluated. In this report, to confirm the application of 3D printing technology, related studies in domestic and international journals of geophysics were searched and a comprehensive analysis was conducted according to year and the additive manufacturing type. The analysis showed that studies on 3D printing technology have been dominantly conducted since the 2010s, which corresponds to the time when 3D printers were commercialized. Moreover, 87% of the studies used the material extrusion additive manufacturing method, and the research was conducted in specific universities. This research can be used as basic data for application of 3D printing technology in geophysics.

Evaluation of the Applicability of PET/CT Phantom as a 3D Printing Material (PET/CT 팬텀의 3D 프린팅 소재 적용 가능성 평가)

  • Lee, Ju-young;Kim, Ji-Hyeon;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.423-431
    • /
    • 2022
  • The purpose of this study is to present objective information in applying 3D printing technology for PET/CT (Positron Emission Tomography/Computed Tomography) performance evaluation and use it as a basic research that can be applied to various purposes in the future. Phantoms were manufactured with step wedge of ABS(Acrylonitrile Butadiene Styrene) and ACR(Acrylic acid) material. The counts for each ROI(Region of Interest) were analyzed through image acquisition in PET/CT. And the variation rate of counts and CNR(Contrast Noise Ratio) was evaluated. In the counts analysis, the effect of thickness occurred. In addition, in the variation rate analysis, the thickness setting of steps wedge 4 to 5 levels should be considered first. These results minimize quantitative and qualitative changes in the phantom manufactured based on 3D printing, and enable more stable PET/CT performance evaluation. Based on 3D printing in PET/CT, various phantoms are expected to be produced in the future. If the characteristics of each material are considered and applied through the basic research such as this research, the result of the phantom manufactured through 3D printing can be more meaningful and will be used in a wide range.

3D Printing : A New Industrial Revolution? (3D 프린팅 : 새로운 산업혁명인가?)

  • Chung, Byoung-gyu
    • Journal of Venture Innovation
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Many research or consulting institute refered to Artificial Intelligence, Internet of Things, Blockchain technology and 3D Printing as key driving forces and technologies of 4th industrial revolution. Compared with traditional manufacturing as a subtractive manufacturing(SM), 3D printing technology as an additive manufacturing(AM) will revolutionary impacts on many industries. This study compared 3D printing with traditional manufacturing in the economic, manufacturing, and marketing perspectives. This study also analyzed issues of 3D printing for the purpose of building business ecosystem. Finally agenda for the further research were suggested.

Licensing strategies and tasks for medical devices utilizing 3D printing technology in dentistry (치의학분야 3D 프린팅 기술이 적용된 의료기기의 인·허가전략과 과제)

  • Shin, Eun Mi;Yang, Seung-Min
    • The Journal of the Korean dental association
    • /
    • v.56 no.9
    • /
    • pp.479-490
    • /
    • 2018
  • 3D printing technology supporting the specific patient medical services is actively being implemented in dentistry. The purpose of this study is to introduce the legal and institutional considerations to the medical practitioners in dentistry who must observe when they manufacture medical devices using 3D printers, and to provide a ways to activate and enhance their utilization in the domestic approval point of view for medical devices. Through the public data of government agencies and related organizations, the statutory system and compliance matters related to the manufacture of 3D printing medical devices have been examined and reviewed for the government's improvement efforts. Through the study, the government has been actively improving the system and making policy, but the active interest and participation of medical professionals and related workers are continually required to solve the problems which are scattered. 3D printing technology is expected to be more frequently utilized in the field of dentistry in near future. Therefore, it is essential to establish measures to improve the regulation through continuous cooperation with the related ministries with the long-term point of view enhancing smooth entry to the market for the medical devices by taking data from the continued research.

  • PDF

Evaluation of Scintillation Camera Applications of 3D Printing Phantom (3D 프린팅 팬텀의 섬광카메라 적용 평가)

  • Park, Hoon-Hee;Lee, Ju-young;Kim, Ji-Hyeon
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.343-350
    • /
    • 2021
  • 3D printing technology is an additive manufacturing technology produced through 3D scanning or modeling method. This technology can be produced in a short time without mold, which has recently been applied in earnest in various fields. In the medical field, 3D printing technology is used in various fields of radiology and radiation therapy, but related research is insufficient in the field of nuclear medicine. In this study, we compare the characteristics of traditional nuclear medicine phantom with 3D printing technology and evaluate its applicability in clinical trials. We manufactured the same size phantom of poly methyl meta acrylate(PMMA) and acrylonitrile butadiene styrene(ABS) based on the aluminum step wedge. We used BrightView XCT(Philips Health Care, Cleveland, USA) SPECT/CT. We acquired 60 min list mode for Aluminum, PMMA and ABS phantoms using Rectangular Flood Phantom (Biodex, New York, USA) 99mTcO4 3 mCi(111 MBq), 6 mCi (222MBq) and 57Co Flood phantom(adq, New Hampshire, USA). For the analysis of acquired images, the region of interest(ROI) were drawn and evaluated step by step for each phantom. Depending on the type of radioisotope and radiation dose, the counts of the ABS phantom was similar to that of the PMMA phantom. And as the step thickness increased, the counts decreased linearly. When comparing the linear attenuation coefficient of Aluminum, PMMA and ABS phantom, the linear attenuation coefficient of the aluminium phantom was higher than that of the others, and the PMMA and ABS phantom had similar the linear attenuation coefficient. Based on ABS phantom manufactured by 3D printing technology, as the thickness of the PMMA phantom increased, the counts and linear attenuation coefficient decreased linearly. It has been confirmed that ABS phantom is applicable in the clinical field of nuclear medicine. If the calibration factor is applied through further research, it is believed that practical application will be possible.

Mechanical Properties Characteristics according to Heat Treatment Conditions of Medical Bone Plates by 3D Printing (3D프린팅 제조기반 골절합용 금속판의 열처리 조건에 따른 기계적 성능 특성)

  • Jung, Hyunwoo;Park, Sung Jun;Woo, Heon
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.116-123
    • /
    • 2022
  • This study analyzes the Mechanical properties of a medical bone plate by 3D printing. With the recent development of 3D printing technology, it is being applied in various fields. In particular, in the medical field, the use of 3D printing technology, which was limited to the existing orthosis and surgical simulation, has recently been used to replacement bones lost due to orthopedic implants using metal 3D printing. The field of application is increasing, such as replacement. However, due to the manufacturing characteristics of 3D printing, micro pores are generated inside the metal printing output, and it is necessary to reduce the pores and the loss of mechanical properties through post-processing such as heat treatment. Accordingly, the purpose of this study is to analyze the change in mechanical performance characteristics of medical metal plates manufactured by metal 3D printing under various conditions and to find efficient metal printing results. The specimen to be used in the experiment is a metal plate for trauma fixation applied to the human phalanx, and it was manufactured using the 'DMP Flex 100(3D Systems, USA), a metal 3D printer of DMLS (Direct Metal Laser Sintering) method. It was manufactured using the PBF(Powder Bed Fusion) method using Ti6Al4V ELI powder material.

Dimensional Characteristics according to Internal Density of Automotive Inner Ring in 3D Printing (3D 프린팅에서 자동차용 Inner ring의 내부밀도에 따른 치수 특성)

  • Kim, Hae-Ji;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.96-102
    • /
    • 2019
  • Reverse engineering involves duplicating a physical part by measuring and analyzing its physical dimensions, features, and material properties. By combining reverse engineering with three-dimensional (3D) printing, engineers can simply fabricate and evaluate functional prototypes. This design methodology has been attracting increasing interest with the advent of the Fourth Industrial Revolution. In the present study, we apply reverse engineering and 3D printing technologies to evaluate a fabricated automotive inner ring prototype. Through 3D printing, inner rings of various densities were prepared. Their physical dimensions were measured with a 3D scanning system. Of our interest was the effect of inner ring density on the physical dimensions of the fabricated prototype. We compared the design dimensions and physical dimensions of the fabricated prototypes. The results revealed that even the 20% density of inner ring was effective for 3D printing in terms of satisfying the design requirements.

3D Bioprinting Technology in Biochemical Engineering (바이오화학공학에서 3D 바이오프린팅 기술)

  • Eom, Tae Yoon
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.285-292
    • /
    • 2016
  • Three-dimensional (3D) printing is driving major innovation in various areas including engineering, manufacturing, art, education and biosciences such as biochemical engineering, tissue engineering and regenerative medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional tissues. Compared with non-biological printing, 3D bioprinting involves additional complexities which require the integration of technologies from the fields of biochemical engineering, biomaterial sciences, cell biology, physics, pharmaceutics and medical science.

Evaluation of clinical adaptation of dental prostheses printed by 3-dimensional printing technology (3D 프린팅 기술로 출력된 치과 보철물의 임상적 적합도 평가)

  • Kim, Ki-Baek
    • Journal of Technologic Dentistry
    • /
    • v.41 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Purpose: The objectives of this study was to evaluate clinical adaptation of dental prostheses printed by 3 dimensional(3D) printing technology. Methods: Ten study models were prepared. Ten specimens of experimental group were printed by 3D printing(3DP group). As a control group, 10 specimens were fabricated by casting method on the same models. Marginal gaps of all specimens were measured to evaluate clinical adaptation. Marginal adaptations were measured using silicone replica technique and measured at 8 sites per specimen. Wilcoxon's signed-ranks test was used for statistical analysis(${\alpha}=0.05$). Results: Means of marginal adaptations were $95.1{\mu}m$ for 3DP group and $75.9{\mu}m$ for CAST group(p < 0.000). Conclusion : However, the mean of the 3DP group was within the clinical tolerance suggested by the previous researchers. Based on this, dental prosthesis fabricated by 3D printing technology is considered to be clinically acceptable.