• 제목/요약/키워드: 3D Pose Estimation

검색결과 155건 처리시간 0.03초

Automatic Registration of Two Parts using Robot with Multiple 3D Sensor Systems

  • Ha, Jong-Eun
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1830-1835
    • /
    • 2015
  • In this paper, we propose an algorithm for the automatic registration of two rigid parts using multiple 3D sensor systems on a robot. Four sets of structured laser stripe system consisted of a camera and a visible laser stripe is used for the acquisition of 3D information. Detailed procedures including extrinsic calibration among four 3D sensor systems and hand/eye calibration of 3D sensing system on robot arm are presented. We find a best pose using search-based pose estimation algorithm where cost function is proposed by reflecting geometric constraints between sensor systems and target objects. A pose with minimum gap and height difference is found by greedy search. Experimental result using demo system shows the robustness and feasibility of the proposed algorithm.

트랜스포머 기반의 다중 시점 3차원 인체자세추정 (Multi-View 3D Human Pose Estimation Based on Transformer)

  • 최승욱;이진영;김계영
    • 스마트미디어저널
    • /
    • 제12권11호
    • /
    • pp.48-56
    • /
    • 2023
  • 3차원 인체자세추정은 스포츠, 동작인식, 영상매체의 특수효과 등의 분야에서 널리 활용되고 있는 기술이다. 이를 위한 여러 방법들 중 다중 시점 3차원 인체자세추정은 현실의 복잡한 환경에서도 정밀한 추정을 하기 위해 필수적인 방법이다. 하지만 기존 다중 시점 3차원 인체자세추정 모델들은 3차원 특징 맵을 사용함에 따라 시간 복잡도가 높은 단점이 있다. 본 논문은 계산 복잡도가 적은 트랜스포머 기반 기존 단안 시점 다중 프레임 모델을 다중 시점에 대한 3차원 인체자세추정으로 확장하는 방법을 제안한다. 다중 시점으로 확장하기 위하여 먼저 2차원 인체자세 검출자 CPN(Cascaded Pyramid Network)을 활용하여 획득한 4개 시점의 17가지 관절에 대한 2차원 관절좌표를 연결한 8차원 관절좌표를 생성한다. 그 다음 이들을 패치 임베딩 한 뒤 17×32 데이터로 변환하여 트랜스포머 모델에 입력한다. 마지막으로, 인체자세를 출력하는 MLP(Multi-Layer Perceptron) 블록을 매 반복 마다 사용한다. 이를 통해 4개 시점에 대한 3차원 인체자세추정을 동시에 수정한다. 입력 프레임 길이 27을 사용한 Zheng[5]의 방법과 비교했을 때 제안한 방법의 모델 매개변수의 수는 48.9%, MPJPE(Mean Per Joint Position Error)는 20.6mm(43.8%) 감소했으며, 학습 횟수 당 평균 학습 소요 시간은 20배 이상 빠르다.

  • PDF

카메라 교정 오차에 강인한 3차원 직선 경로 추종을 위한 전환 비주얼 서보잉 기법 (A Switched Visual Servoing Technique Robust to Camera Calibration Errors for Reaching the Desired Location Following a Straight Line in 3-D Space)

  • 김도형;정명진
    • 로봇학회논문지
    • /
    • 제1권2호
    • /
    • pp.125-134
    • /
    • 2006
  • The problem of establishing the servo system to reach the desired location keeping all features in the field of view and following a straight line is considered. In addition, robustness of camera calibration parameters is considered in this paper. The proposed approach is based on switching from position-based visual servoing (PBVS) to image-based visual servoing (IBVS) and allows the camera path to follow a straight line. To achieve the objective, a pose estimation method is required; the camera's target pose is estimated from the obtained images without the knowledge of the object. A switched control law moves the camera equipped to a robot end-effector near the desired location following a straight line in Cartesian space and then positions it to the desired pose with robustness to camera calibration error. Finally simulation results show the feasibility of the proposed visual servoing technique.

  • PDF

모션 기반의 검색을 사용한 동적인 사람 자세 추적 (Dynamic Human Pose Tracking using Motion-based Search)

  • 정도준;윤정오
    • 한국산학기술학회논문지
    • /
    • 제11권7호
    • /
    • pp.2579-2585
    • /
    • 2010
  • 본 논문은 단안 카메라로부터 입력된 영상에서 모션 기반의 검색을 사용한 동적인 사람 자세 추적 방법을 제안한다. 제안된 방법은 3차원 공간에서 하나의 사람 자세 후보를 생성하고, 생성된 자세 후보를 2차원 이미지 공간으로 투영하여, 투영된 사람 자세 후보와 입력 이미지와의 특징 값 유사성을 비교한다. 이 과정을 정해진 조건을 만족 할 때까지 반복하여 이미지와의 유사성과, 신체 부분간 연결성이 가장 좋은 3차원 자세를 추정한다. 제안된 방법에서는 입력 이미지에 적합한 3차원 자세를 검색할 때, 2차원 영상에서 추정된 신체 각 부분들의 모션 정보를 사용해 검색 공간을 정하고 정해진 검색 공간에서 탐색하여 사람의 자세를 추정한다. 2차원 이미지 모션은 비교적 높은 제약이 있어서 검색 공간을 의미있게 줄일 수 있다. 이 방법은 모션 추정이 검색 공간을 효율적으로 할당 해주고, 자세 추적이 여러 가지 다양한 모션에 적응할 수 있다는 장점을 가진다

3D 모델과 Optical flow를 이용한 실시간 얼굴 모션 추정 (Pose Estimation of Face Using 3D Model and Optical Flow in Real Time)

  • 권오륜;전준철
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.780-785
    • /
    • 2006
  • HCI, 비전 기반 사용자 인터페이스 또는 제스쳐 인식과 같은 많은 분야에서 3 차원 얼굴 모션을 추정하는 것은 중요한 작업이다. 연속된 2 차원 이미지로부터 3 차원 모션을 추정하기 위한 방법으로는 크게 외형 기반 방법이나 모델을 이용하는 방법이 있다. 본 연구에서는 동영상으로부터 3 차원 실린더 모델과 Optical flow를 이용하여 실시간으로 얼굴 모션을 추정하는 방법을 제안하고자 한다. 초기 프레임으로부터 얼굴의 피부색과 템플릿 매칭을 이용하여 얼굴 영역을 검출하고 검출된 얼굴 영역에 3 차원 실린더 모델을 투영하게 된다. 연속된 프레임으로 부터 Lucas-Kanade 의 Optical flow 를 이용하여 얼굴 모션을 추정한다. 정확한 얼굴 모션 추정을 하기 위해 IRLS 방법을 이용하여 각 픽셀에 대한 가중치를 설정하게 된다. 또한, 동적 템플릿을 이용해 오랫동안 정확한 얼굴 모션 추정하는 방법을 제안한다.

  • PDF

편향된 다양체 학습 기반 시점 변화에 강인한 인체 포즈 추정 (View-Invariant Body Pose Estimation based on Biased Manifold Learning)

  • 허동철;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권11호
    • /
    • pp.960-966
    • /
    • 2009
  • 다양체는 고차원 표본 데이터들 사이의 관계를 표현하기 위해 저차원 공간에서 생성된 구조로서 고차원 데이터인 영상과 3차원 인체 구성 데이터를 처리하는데 많이 사용되고 있다. 다양체 학습은 이러한 다양체를 생성하는 과정을 말한다. 그러나 다양체 학습을 이용한 포즈 추정은 학습하지 못한 실루엣 변화에 취약하다. 실루엣 변화는 2차원 영상에서 시점 변화, 포즈 변화, 사람 변화, 거리 변화, 잡영에 의해 발생되며, 이러한 변화를 하나의 다양체로 학습하기란 어렵다. 본 논문에서는 실루엣 변화를 유발하는 문제중 하나인 시점 변화에 대한 문제를 해결하고자 한다. 종래에 시점 변화에 상관 없이 포즈를 추정하는 방법에서는, 각 시점마다 다양체를 가지거나 사상 함수에서 시점에 관련한 요소들을 분리하석 별도의 다양체로 학습한다. 하지만 이러한 방법들은 복잡하고, 추정 과정에서 어떠한 시점의 다양체를통해 포즈를 추정할지 판단을 요구하며, 비교사 학습으로 인해 실루엣과 대응되는 3차원 인체 구성을 지정하기 어렵다. 본 논문에서는 시점 다양체, 포즈 다양체, 인체 구성 다양체를 편향된 다양체로 학습하여 사용하는 방법을 제안한다. 그리고 영상과 시점 다양체, 영상과 포즈 다양체, 인체 구성과 인체 구성 다양체, 포즈 다양체와 인체 구성 다양체 간에 사상 함수를 학습한다. 실험에서는 학습된 다양체와 사상 함수를 이용하여 24개의 시점에서 강인한 포즈 추정 결과를 보여주고 있다.

Head Pose Estimation by using Morphological Property of Disparity Map

  • Jun, Se-Woong;Park, Sung-Kee;Lee, Moon-Key
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.735-739
    • /
    • 2005
  • This paper presents a new system to estimate the head pose of human in interactive indoor environment that has dynamic illumination change and large working space. The main idea of this system is to suggest a new morphological feature for estimating head angle from stereo disparity map. When a disparity map is obtained from stereo camera, the matching confidence value can be derived by measurements of correlation of the stereo images. Applying a threshold to the confidence value, we also obtain the specific morphology of the disparity map. Therefore, we can obtain the morphological shape of disparity map. Through the analysis of this morphological property, the head pose can be estimated. It is simple and fast algorithm in comparison with other algorithm which apply facial template, 2D, 3D models and optical flow method. Our system can automatically segment and estimate head pose in a wide range of head motion without manual initialization like other optical flow system. As the result of experiments, we obtained the reliable head orientation data under the real-time performance.

  • PDF

단안 카메라를 이용한 수중 정밀 항법을 위한 모델 기반 포즈 추정 (Model-Based Pose Estimation for High-Precise Underwater Navigation Using Monocular Vision)

  • 박지성;김진환
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.226-234
    • /
    • 2016
  • In this study, a model-referenced underwater navigation algorithm is proposed for high-precise underwater navigation using monocular vision near underwater structures. The main idea of this navigation algorithm is that a 3D model-based pose estimation is combined with the inertial navigation using an extended Kalman filter (EKF). The spatial information obtained from the navigation algorithm is utilized for enabling the underwater robot to navigate near underwater structures whose geometric models are known a priori. For investigating the performance of the proposed approach the model-referenced navigation algorithm was applied to an underwater robot and a set of experiments was carried out in a water tank.

Multi-Human Behavior Recognition Based on Improved Posture Estimation Model

  • Zhang, Ning;Park, Jin-Ho;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제24권5호
    • /
    • pp.659-666
    • /
    • 2021
  • With the continuous development of deep learning, human behavior recognition algorithms have achieved good results. However, in a multi-person recognition environment, the complex behavior environment poses a great challenge to the efficiency of recognition. To this end, this paper proposes a multi-person pose estimation model. First of all, the human detectors in the top-down framework mostly use the two-stage target detection model, which runs slow down. The single-stage YOLOv3 target detection model is used to effectively improve the running speed and the generalization of the model. Depth separable convolution, which further improves the speed of target detection and improves the model's ability to extract target proposed regions; Secondly, based on the feature pyramid network combined with context semantic information in the pose estimation model, the OHEM algorithm is used to solve difficult key point detection problems, and the accuracy of multi-person pose estimation is improved; Finally, the Euclidean distance is used to calculate the spatial distance between key points, to determine the similarity of postures in the frame, and to eliminate redundant postures.

벡터내적 기반 카메라 외부 파라메터 응용 : 절대표정 (Camera Exterior Parameters Based on Vector Inner Production Application: Absolute Orientation)

  • 전재춘
    • 제어로봇시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.70-74
    • /
    • 2008
  • In the field of camera motion research, it is widely held that the position (movement) and pose (rotation) of cameras are correlated and cannot be independently separated. A new equation based on inner product is proposed here to independently separate the position and pose. It is proved that the position and pose are not correlated and the equation is applied to estimation of the camera exterior parameters using a real image and 3D data.