KSII Transactions on Internet and Information Systems (TIIS)
/
제9권8호
/
pp.3136-3150
/
2015
A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.
In this paper, a novel localization method for a monocular camera is proposed by using a feature-based probabilistic map. The localization of a camera is generally estimated from 3D-to-2D correspondences between a 3D map and an image plane through the PnP algorithm. In the computer vision communities, an accurate 3D map is generated by optimization using a large number of image dataset for camera pose estimation. In robotics communities, a camera pose is estimated by probabilistic approaches with lack of feature. Thus, it needs an extra system because the camera system cannot estimate a full state of the robot pose. Therefore, we propose an accurate localization method for a monocular camera using a probabilistic approach in the case of an insufficient image dataset without any extra system. In our system, features from a probabilistic map are projected into an image plane using linear approximation. By minimizing Mahalanobis distance between the projected features from the probabilistic map and extracted features from a query image, the accurate pose of the monocular camera is estimated from an initial pose obtained by the PnP algorithm. The proposed algorithm is demonstrated through simulations in a 3D space.
In this work we present a robust and fast approach to estimate 3D vehicle pose that can provide results under a specific traffic surveillance conditions. Such limitations are expressed by single fixed CCTV camera that is located relatively high above the ground, its pitch axes is parallel to the reference plane and the camera focus assumed to be known. The benefit of our framework that it does not require prior training, camera calibration and does not heavily rely on 3D model shape as most common technics do. Also it deals with a bad shape condition of the objects as we focused on low resolution surveillance scenes. Pose estimation task is presented as PnP problem to solve it we use well known "POSIT" algorithm [1]. In order to use this algorithm at least 4 non coplanar point's correspondence is required. To find such we propose a set of techniques based on model and scene geometry. Our framework can be applied in real time video sequence. Results for estimated vehicle pose are shown in real image scene.
본 연구에서는 다수의 키넥트 센서를 이용하여 효율적인 실시간 운동 자세 추정 시스템을 설계하고 개발하였다. 이 시스템은 정면과 측면에 키넥트 센서를 사용하여, 한 개로 추적이 어려웠던 사용자의 특정 자세 (예를 들어, 무릎컬 또는 런지)를 보다 정확하게 측정하고 인식하는 것을 목적으로 한다. 그리고 추후 다양한 자세를 지원할 수 있도록 확장 가능하고 모듈화 된 방법으로 설계되었다. 이 시스템은 여러 클라이언트와 유니티 3D 서버로 구성된다. 클라이언트는 키넥트 골격 데이터를 처리하여 서버로 전송한다. 서버는 다중 키넥트를 보정하고, 각도와 거리를 기반으로 한 특징 값 추출하며 여러 대의 키넥트로부터 계산된 특징 값의 가중 평균을 사용하여 자세 인식 모델을 기반으로 자세 추정 알고리즘을 적용한다. 본 논문은 다중 키넥트 센서를 이용한 인간 운동 자세 추정 시스템의 설계 및 구현 방법을 제시하고, 체험형 유니티 3D 운동 게임에 적용한 예시를 설명한다.
The determination of camera position and orientation from known correspondences of 3D reference points and their images is known as pose estimation in computer vision or space resection in photogrammetry. This paper discusses estimation of transform parameters using the pattern matching method with 2D images only. In general, the 3D reference points or lines are needed to find out the 3D transform parameters, but this method is applied without the 3D reference points or lines. It uses only two images to find out the transform parameters between two image. The algorithm is simulated using Visual C++ on Windows 98.
Journal of information and communication convergence engineering
/
제21권4호
/
pp.337-345
/
2023
In this study, we formulated a method that evaluates Taekwondo Poomsae performance using a series of choreographed training movements. Despite recent achievements in 3D human pose estimation (HPE) performance, the analysis of human actions remains challenging. In particular, Taekwondo Poomsae action analysis is challenging owing to the absence of time synchronization data and necessity to compare postures, rather than directly relying on joint locations owing to differences in human shapes. To address these challenges, we first decomposed human joint representation into joint rotation (posture) and limb length (body shape), then synchronized a comparison between test and reference pose sequences using DTW (dynamic time warping), and finally compared pose angles for each joint. Experimental results demonstrate that our method successfully synchronizes test action sequences with the reference sequence and reflects a considerable gap in performance between practitioners and professionals. Thus, our method can detect incorrect poses and help practitioners improve accuracy, balance, and speed of movement.
A single vision system limits the ability to accurately understand the spatial constraints and interactions between robots and dynamic workers caused by gantry robots and collaborative robots during production manufacturing. In this paper, we propose a 3D pose registration method for dynamic workers based on a multi-domain vision system for safety monitoring in manufacturing environments. This method uses OpenPose, a deep learning-based posture estimation model, to estimate the worker's dynamic two-dimensional posture in real-time and reconstruct it into three-dimensional coordinates. The 3D coordinates of the reconstructed multi-domain vision system were aligned using the ICP algorithm and then registered to a single 3D coordinate system. The proposed method showed effective performance in a manufacturing process environment with an average registration error of 0.0664 m and an average frame rate of 14.597 per second.
본 논문에서는 두 대의 카메라 영상으로부터 얼굴의 포즈를 추정하는 방법을 제안한다. 제안된 방법은 먼저 두 얼굴 영상으로부터 대응되는 눈썹, 눈, 입의 특징점을 추출한 다음, 스테레오 비전의 삼각법에 의해 특징점에 대한 3차원 위치를 계산한다. 그 다음에는 특징점으로 부터 삼각형을 생성하고 그 삼각형에 수직 방향을 계산함으로써 얼굴의 포즈를 계산한다. 계산된 얼굴의 포즈를 3D 얼굴 모델에 적용해 본 결과 본 논문에서 제안된 방법이 정확한 얼굴 포즈를 추정할 수 있음을 알 수 있었다.
본 논문에서는 Boosted 3-D PCA 방법을 데이터 세트로 평가하고 성능을 평가한다. 그런 다음 네트워크의 특징과 성능을 분석하겠습니다. 본 논문에서는 Boosted 3-D PCA 학습방법을 사용하여 300W-LP 데이터 학습을 수행했으며 AFLW2000 데이터 세트를 사용하여 평가를 평가했다. 결과는 이 성능 결과는 기존 랜드마크 대 포즈 방법보다 자유롭게 얼굴 이미지의 데이터 세트를 사용하여 학습할 수 있으므로 실제 상황에서 포즈를 정확하게 예측할 수 있다. 키포인트 세트의 최적화는 독립적이지 않기 때문에, 우리는 계산 시간을 줄일 방법을 확인했다. 이 방법은 Boosted 3-D PCA 성능을 향상시키거나 다양한 애플리케이션 도메인에 적용하는 데 매우 중요한 자원이 될 것으로 예상한다
자세 추정을 위한 모션 캡처 데이터 파일에는 주변 환경과 움직임의 정도에 따라 부정확한 데이터가 존재할 수 있으므로, 이를 보정하는 작업이 필요하다. 기존에는 직접 후처리 과정을 통해 부정확한 데이터를 복원하였으나, 최근에는 자동화된 방법으로 LSTM, R-CNN 등 다양한 종류의 신경망을 사용한다. 하지만 신경망 기반의 데이터 복원 방법들은 컴퓨터 자원을 많이 요구하므로, 본 논문에서는 신경망 기반의 방법보다 자원 사용량은 낮추면서 데이터 복원율은 유지하는 방법을 제안한다. 제안하는 방법은 자세 측정 데이터(c3d)를 활용하여 부정확한 자세 데이터를 자동으로 복원한다. 실험 결과, 데이터의 부정확한 정도에 따라 89%에서부터 99% 정도의 데이터 복원율을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.