• Title/Summary/Keyword: 3D Pointcloud

Search Result 12, Processing Time 0.023 seconds

Development of Pointcloud Data Integration Technology in Construction Sites via Drone Photogrammetry and MMS LiDAR (드론 및 MMS를 활용한 건설현장 점군 데이터 통합 기술 개발)

  • Jae-Woo Park;Dong-Jun Yeom
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1145-1153
    • /
    • 2023
  • This study presents the development of pointcloud data integration technology in construction sites via drone photogrammetry and MMS LiDAR. The integration of pointcloud data from drones and MMS technology can provide precise and accurate 3D digital maps of construction sites, which can benefit the development of smart construction and BIM. The advantages of using both drones and MMS technology for pointcloud data acquisition in construction sites are discussed, along with the limitations and challenges of using drone photogrammetry and MMS LiDAR for pointcloud data integration. The results of this study can contribute to the advancement of pointcloud data integration technology in construction sites and improve the efficiency and accuracy of construction projects.

A Study on Utilization 3D Shape Pointcloud without GCPs using UAV images (UAV 영상을 이용한 무기준점 3D 형상 점군데이터 활용 연구)

  • Kim, Min-Chul;Yoon, Hyuk-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • Recently, many studies have examined UAVs (unmanned aerial vehicles), which can replace and supplement existing surveying sensors, systems, and images. This study focused on the use of UAV images and assessed the possibility of utilization in areas where it is difficult to obtain GCPs (ground control points), such as disasters. Therefore, 3D (dimensional) pointcloud data were generated using UAV images and the absolute/relative accuracy of the generated model data using GCPs and without GCPs was assessed. The results showed the 3D shape pointcloud generated by UAV image matching was proven if the relative accuracy was set, regardless of whether GCPs were used or not; the quantitative measurement error rate was within 1%. Even if the absolute accuracy was low, the 3D shape pointcloud that had been post processed quickly was sufficient to be utilized when it is impossible to acquire GCPs or urgent analysis is required. In particular, the results can obtain quantitative measurements and meaningful data, such as the length and area, even in cases with the ground reference point surveying and post-process.

Moving Object Segmentation-based Approach for Improving Car Heading Angle Estimation (Moving Object Segmentation을 활용한 자동차 이동 방향 추정 성능 개선)

  • Chiyun Noh;Sangwoo Jung;Yujin Kim;Kyongsu Yi;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.130-138
    • /
    • 2024
  • High-precision 3D Object Detection is a crucial component within autonomous driving systems, with far-reaching implications for subsequent tasks like multi-object tracking and path planning. In this paper, we propose a novel approach designed to enhance the performance of 3D Object Detection, especially in heading angle estimation by employing a moving object segmentation technique. Our method starts with extracting point-wise moving labels via a process of moving object segmentation. Subsequently, these labels are integrated into the LiDAR Pointcloud data and integrated data is used as inputs for 3D Object Detection. We conducted an extensive evaluation of our approach using the KITTI-road dataset and achieved notably superior performance, particularly in terms of AOS, a pivotal metric for assessing the precision of 3D Object Detection. Our findings not only underscore the positive impact of our proposed method on the advancement of detection performance in lidar-based 3D Object Detection methods, but also suggest substantial potential in augmenting the overall perception task capabilities of autonomous driving systems.

Skeleton-based 3D Pointcloud Registration Method (스켈레톤 기반의 3D 포인트 클라우드 정합 방법)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.89-90
    • /
    • 2021
  • 본 논문에서는 3D(dimensional) 스켈레톤을 이용하여 멀티 뷰 RGB-D 카메라를 캘리브레이션 하는 새로운 기법을 제안하고자 한다. 멀티 뷰 카메라를 캘리브레이션 하기 위해서는 일관성 있는 특징점이 필요하다. 우리는 다시점 카메라를 캘리브레이션 하기 위한 특징점으로 사람의 스켈레톤을 사용한다. 사람의 스켈레톤은 최신의 자세 추정(pose estimation) 알고리즘들을 이용하여 쉽게 구할 수 있게 되었다. 우리는 자세 추정 알고리즘을 통해서 획득된 3D 스켈레톤의 관절 좌표를 특징점으로 사용하는 RGB-D 기반의 캘리브레이션 알고리즘을 제안한다.

  • PDF

AR-based 3D Digital Map Visualization Support Technology for Field Application of Smart Construction Technology

  • Song, Jinwoo;Hong, Jungtaek;Kwon, Soonwook
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1255-1255
    • /
    • 2022
  • Recently, research on digital twins to generate digital information and manage construction in real-time using advanced technology is being conducted actively. However, in the construction industry, it is difficult to optimize and apply digital technology in real-time due to the nature of the construction industry in which information is constantly fluctuating. In addition, inaccurate information on the topography of construction projects is a major challenge for earthmoving processes. In order to ultimately improve the cost-effectiveness of construction projects, both construction quality and productivity should be addressed through efficient construction information management in large-scale earthworks projects. Therefore, in this study, a 3D digital map-based AR site management work support system for higher efficiency and accuracy of site management was proposed by using unmanned aerial vehicles (UAV) in wide earthworks construction sites to generate point cloud data, building a 3D digital map through acquisition and analysis of on-site sensor-based information, and performing the visualization with AR at the site By utilizing the 3D digital map-based AR site management work support system proposed in this study, information is able to be provided quickly to field managers to enable an intuitive understanding of field conditions and immediate work processing, thereby reducing field management sluggishness and limitations of traditional information exchange systems. It is expected to contribute to the improvement of productivity by overcoming factors that decrease productivity in the construction industry and the improvement of work efficiency at construction sites.

  • PDF

A method of improving the quality of 3D images acquired from RGB-depth camera (깊이 영상 카메라로부터 획득된 3D 영상의 품질 향상 방법)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.637-644
    • /
    • 2021
  • In general, in the fields of computer vision, robotics, and augmented reality, the importance of 3D space and 3D object detection and recognition technology has emerged. In particular, since it is possible to acquire RGB images and depth images in real time through an image sensor using Microsoft Kinect method, many changes have been made to object detection, tracking and recognition studies. In this paper, we propose a method to improve the quality of 3D reconstructed images by processing images acquired through a depth-based (RGB-Depth) camera on a multi-view camera system. In this paper, a method of removing noise outside an object by applying a mask acquired from a color image and a method of applying a combined filtering operation to obtain the difference in depth information between pixels inside the object is proposed. Through each experiment result, it was confirmed that the proposed method can effectively remove noise and improve the quality of 3D reconstructed image.

Basic Study of Architectural Design Using low-cost, low-altitute photogrammertric system (저비용 UAV를 이용한 저고도 항공촬영 영상지도 제작방법의 건축설계 활용을 위한 기초연구)

  • Ahn, Kiljae;Kim, Yongsung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.4
    • /
    • pp.789-796
    • /
    • 2015
  • The first phase of architecture design is the field survey of the site and its surroundings. To gather the information there are two methods :the traditional method of an onsite survey, and recently using 3D geometry data and high quality image mapping from online services such as Google Earth. However, the urban condition is fast changing, and information from online services may lack sufficient information. This paper presents the to fast and effective site survey method for urban site using an affordable and fully automated UAV for the architectural design field.

Application of Point Cloud Data for Transmission Power Line Monitoring (송전선 모니터링을 위한 포인트클라우드 데이터 활용)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.224-229
    • /
    • 2018
  • Korea is experiencing a rapid increase in electricity consumption due to rapid economic development, and many power transmission towers are installed to provide smooth power supply. The high-voltage transmission line is mainly made of aluminum stranded wire, and the wire is loosely guided so that some deflection is maintained. The degree of deflection has a great influence on the quality of the construction and the life of the cable. As the time passes, the shrinkage and expansion occur repeatedly due to the weight of the cable and the surrounding environment. Therefore, periodic monitoring is essential for the management of the power transmission line. In this study, the power transmission lines were monitored using 3D laser scanning technology. The data of the power transmission line of the study area was acquired and the point cloud type 3D geospatial information of the transmission line was extracted through data processing. The length of the transmission line and deflection amount were calculated using the 3D geospatial information of the transmission line, and the distance from the surrounding obstacles could be calculated effectively. The result of study shows the utilization of 3D laser scanning technology for transmission line management. Future research will contribute to the efficiency of transmission line management if a transmission line monitoring system using 3D laser scanning technology is developed.

Oil Storage Tank Inspection using 3D Laser Scanner (3D 레이저스캐너를 활용한 유류 저장탱크의 검사)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.867-872
    • /
    • 2020
  • Oil storage tanks are a major structure in chemical industrial complexes. Damage to the structure due to natural disasters or poor management can cause additional damage, such as leakage of chemicals, fire, and explosion, so it is essential to understand the deformation. In this study, data on oil storage tanks were acquired using a 3D laser scanner, and various analyzes were performed for storage tank management by comparing them with design data. Modeling of the oil storage tank was performed using the data and design drawings acquired by a 3D laser scanner. An inspection of the oil storage tank was effectively performed by overlapping. In addition, cross-sectional and exploded views of the deformation were produced to generate visible data on the deformation of the facility, and it was suggested that the oil storage tank had a maximum deformation of -7.16mm through quantitative analysis. Data that can be used for additional work was obtained by producing drawings to be precisely inspected for areas with large deformation. In the future, an inspection of oil storage tanks using 3D laser scanners is quantitative and visible data on oil storage tank deformation. This will greatly improve the efficiency of facility management by rebuilding it.

Construction of Precise Mine Geospatial Information and Ore Modeling for Smart Mining (스마트마이닝을 위한 정밀 광산공간정보 구축 및 광체 모델링)

  • Park, Joon Kyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.725-731
    • /
    • 2020
  • In mineral resource development, resource exploration is a task to find economical minerals on the surface and underground, and the success rate is low compared to the development and production stages, and it is necessary to collect a lot of data through exploration and accurately analyze the collected information. In this study, mine spatial information was constructed using a 3D (Three-dimensional) laser scanner, and accuracy evaluation was performed to obtain a maximum deviation of 0.140 m and an average of 0.095 m in the X, Y and Z directions, and the possibility of utilizing the construction of mine geospatial information through a 3D laser scanner could be presented. In addition, the ore body modeling was performed by applying the interpolation method of the ore body section using the resource exploration results. The ore body modeling result was superimposed with the modeling result of the mine geospatial information built through the 3D laser scanner to construct the ore body modeling result based on the precise mine geospatial information. The results of ore body modeling based on mine geospatial information built through research can increase the ease of data interpretation and the accuracy of the calculated data, which will greatly increase the efficiency of work related to mineral resource development and mine damage prevention in the future.