• 제목/요약/키워드: 3D Point Data

검색결과 1,128건 처리시간 0.038초

JPEG Pleno Holography 표준화 현황 (Recent Status of JPEG Pleno Holography Standardization)

  • 오관정;임용준;추현곤
    • 전자통신동향분석
    • /
    • 제38권2호
    • /
    • pp.66-74
    • /
    • 2023
  • Holography is the most promising 3D imaging technology to faithfully record and reproduce light information. In addition, it is widely explored in metrology for applications such as microscopy and tomography because it can accurately measure 3D shapes. However, the data size of a digital hologram is very large, and the data characteristics are notably different from those of conventional 2D images. The Joint Photographic Experts Group (JPEG) is a group of experts from the International Organization for Standardization/International Electrotechnical Commission. This group develops and maintains standards for still image compression. In 2014, the JPEG released a new standard for 3D image compression called JPEG Pleno to represent light fields, point clouds, and holograms. Among them, JPEG Pleno Holography is the first international standard for hologram compression. We review recent advances in JPEG Pleno Holography standardization and discuss future directions of development.

Re-production of Digital Cultural Heritage and Acquisition of Two Dimensional Drawing Maps for the Cultural Heritage by the Reverse Engineering Technology

  • Lee, Suk Bae;Auh, Su Chang
    • 대한공간정보학회지
    • /
    • 제24권2호
    • /
    • pp.71-78
    • /
    • 2016
  • After the 'Guidelines for the preservation of digital heritage' were published by UNESCO, interests in the fabrication of digital cultural heritage have been increasing throughout the world. The present study was intended to fabricate digital cultural heritages for existing cultural properties using the reverse engineering technology and obtain two-dimensional drawings. Jinju Castle Gongbukmun, which is a cultural property, was selected as a study subject and 3D modeling of Jinju Castle Gongbukmun was conducted by implementing 3D scanning and processing the point cloud data. Using the Gongbukmun 3D model (3D-Gongbukmun) made as such, requirements as a digital heritage were reviewed and 2D drawings of Gongbukmun such as front views, ground plans, and side views could be prepared.

D-TRS 기반 전력기간망 접속을 위한 게이트웨이 플랫폼 개발 (Development of Platform for Connection of Electronic Power Backbone based on D-TRS)

  • 송병권;이상훈;정태의;김건웅;김진철;김영억
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.382-384
    • /
    • 2008
  • D-TRS is a method of wireless communication. This method will be able to use several frequency for multiple user used chanel together. TETRA of D-TRS technology is not rented network. Using TETRA network has the strong point which cost better than CDMA network of rental network. Master server of SCADA(Supervisory Control And Data Acquisition) system is realtime supervise control and a data acquire the control system or the RTU(Remote Terminal Unit). The present paper is developed and proposal the gateway platform for electronic power backbone network based on D-TRS. This gateway platform is converted DNP3.0 messages with TETRA PDU and converted TETRA PDU with DNP3.0 messages. Master server and FRTU will be able to send and receive DNP3.0 message via TETRA network using this gateway platform.

  • PDF

Accuracy of 3D white light scanning of abutment teeth impressions: evaluation of trueness and precision

  • Jeon, Jin-Hun;Kim, Hae-Young;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권6호
    • /
    • pp.468-473
    • /
    • 2014
  • PURPOSE. This study aimed to evaluate the accuracy of digitizing dental impressions of abutment teeth using a white light scanner and to compare the findings among teeth types. MATERIALS AND METHODS. To assess precision, impressions of the canine, premolar, and molar prepared to receive all-ceramic crowns were repeatedly scanned to obtain five sets of 3-D data (STL files). Point clouds were compared and error sizes were measured (n=10 per type). Next, to evaluate trueness, impressions of teeth were rotated by $10^{\circ}-20^{\circ}$ and scanned. The obtained data were compared with the first set of data for precision assessment, and the error sizes were measured (n=5 per type). The Kruskal-Wallis test was performed to evaluate precision and trueness among three teeth types, and post-hoc comparisons were performed using the Mann-Whitney U test with Bonferroni correction (${\alpha}=.05$). RESULTS. Precision discrepancies for the canine, premolar, and molar were $3.7{\mu}m$, $3.2{\mu}m$, and $7.3{\mu}m$, respectively, indicating the poorest precision for the molar (P<.001). Trueness discrepancies for teeth types were $6.2{\mu}m$, $11.2{\mu}m$, and $21.8{\mu}m$, respectively, indicating the poorest trueness for the molar (P=.007). CONCLUSION. In respect to accuracy the molar showed the largest discrepancies compared with the canine and premolar. Digitizing of dental impressions of abutment teeth using a white light scanner was assessed to be a highly accurate method and provided discrepancy values in a clinically acceptable range. Further study is needed to improve digitizing performance of white light scanning in axial wall.

체표면분할법에 의한 성인 남성용 피티드 토르소형 원형 설계 (Development of Male Fitted Torso Type Basic Patterns According to the Body Surface Segment Method)

  • 서추연
    • 한국의류학회지
    • /
    • 제33권7호
    • /
    • pp.1109-1120
    • /
    • 2009
  • This study develops a fitted torso type basic pattern for men by utilizing 3D body scan data. Recent fashion trends are reflected in the development of the pattern. The subjects were 15 men in their 20's, who wear size 95 (M size). Body scan data was obtained through a 3D whole body scanner (WB4, Cyberware, USA), and a body surface development figure for developing male fitted torso type basic pattern was attained through the use of Rapid Form 2006 as well as Auto CAD 2006 programs. The results are as follows: A body surface development figure through body surface segment method showed high exactitude in an error range of 100$\pm$1%. In addition, it occurred in an error range of 100:1:3% because of the hard scanning conditions in the incline of the shoulder and armpit areas. However, the body surface development figure as well as the direct measurement results can be used as basic data for the given patternmaking since the error range falls into 100$\pm$3%. Dart amounts obtained from the average cross section were center back 2.2cm (24.3%), back armpit point 3.8cm (41.8%), front armpit point 3.0cm (33.9%). As shown the jacket pattern, the biggest dart amount was portioned out at the back armpit point. The drafting equations for the development pattern acquired are as follows; Full width=C/2+5cm, back length=height/4-1cm, armhole depth=(C/10+12cm)+3cm, back width=2C/10+2cm, front width=2C/10. The development pattern was a fitted torso basic pattern that was composed of 3 pieces, so it would be very useful in developing shirt or jacket patterns. According to the results of the evaluation of the developed pattern appearance, it obtained higher scores of over 3.5 points in almost items, meaning that the developed pattern is appropriate for a male fitted torso type basic pattern. It suggests a possibility of patternmaking from a body surface development figure in 2-D to prototype.

무인 자동차의 2차원 레이저 거리 센서를 이용한 도시 환경에서의 빠른 주변 환경 인식 방법 (Fast Scene Understanding in Urban Environments for an Autonomous Vehicle equipped with 2D Laser Scanners)

  • 안승욱;최윤근;정명진
    • 로봇학회논문지
    • /
    • 제7권2호
    • /
    • pp.92-100
    • /
    • 2012
  • A map of complex environment can be generated using a robot carrying sensors. However, representation of environments directly using the integration of sensor data tells only spatial existence. In order to execute high-level applications, robots need semantic knowledge of the environments. This research investigates the design of a system for recognizing objects in 3D point clouds of urban environments. The proposed system is decomposed into five steps: sequential LIDAR scan, point classification, ground detection and elimination, segmentation, and object classification. This method could classify the various objects in urban environment, such as cars, trees, buildings, posts, etc. The simple methods minimizing time-consuming process are developed to guarantee real-time performance and to perform data classification on-the-fly as data is being acquired. To evaluate performance of the proposed methods, computation time and recognition rate are analyzed. Experimental results demonstrate that the proposed algorithm has efficiency in fast understanding the semantic knowledge of a dynamic urban environment.

구면좌표계식 기구를 이용한 인공치아의 3차원 측정시스템 개발 (Development of 3D Measuring System for Artificial Pontic using Spherical Coordinate System Mechanism)

  • 맹희영;성봉현
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.427-433
    • /
    • 2010
  • With recent increased demand for reverse engineering in dental machining, the 3D laser scanner is widely used for inspection of artificial pontic. In order to overcome the optical drawback of laser scanner, such as irregular scatter, direction of beam, and the influence of surface integrity, it is developed in this study a new 3D measuring system for artificial pontic using spherical coordinate system mechanism by point laser sensor, which keeps the direction of beam normal to surface consistently. The comprehensive integrated system is established to evaluate the improvement of accuracy with data acquisition system. The experimental results for measuring a master ball and pontic models shows the excellent form accuracy and repeatability compared with conventional apparatus. Also, these results shows the possibility to apply this system for the measuring purpose within 0.05mm accuracy of pontic at the sharp edge or margin contour, which was difficult to measure at the conventional systems.

3차원 시선 추적에 의한 시각 제어 마우스 구현 연구 (Implementation of eye-controlled mouse by real-time tracking of the three dimensional eye-gazing point)

  • 김재한
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.209-212
    • /
    • 2006
  • This paper presents design and implementation methods of the eye-controlled mouse using the real-time tracking of the three dimensional gazing point. The proposed method is based on three dimensional data processing of eye images in the 3D world coordinates. The system hardware consists of two conventional CCD cameras for acquisition of stereoscopic image and computer for processing. And in this paper, the advantages of the proposed algorithm and test results are described.

  • PDF

객체인식과 분석을 위한 3D 체인코드의 적용 (Application of 3D Chain Code for Object Recognition and Analysis)

  • 박소영;이동천
    • 한국측량학회지
    • /
    • 제29권5호
    • /
    • pp.459-469
    • /
    • 2011
  • 객체의 형상을 결정할 수 있는 요소는 크기, 경사도와 경사방향, 곡률, 기복변화, 요소간의 특성관계, 선 또는 면이 이루는 각, 특징점의 분포형태 등 매우 다양하다. 객체가 존재하는 공간은 3차원이지만 대부분의 경우 2차원 공간상에서 객체를 표현하고 이를 기반으로 객체인식을 수행하고 있다. 본 연구에서는 3차원 공간에서 객체의 형태를 판단하기 위한 방법을 제안하기 위하여 기존의 체인코드를 3차원으로 확장시켜 큐브형태의 연산자의 적용을 수행하였다. 일련의 코드로 생성되는 3D 체인코드를 분석하여 객체를 정형화하여 하향식 방법에 의한 객체 모델링의 기반이 될 수 있음을 보여 주었다. 또한 점 데이터 분할에 적용할 수 있으며 이는 라이다 데이터에 의한 모델링에 사용될 수 있다.

자유시점 TV를 위한 다시점 비디오의 계층적 깊이 영상 표현과 H.264 부호화 (Layered Depth Image Representation And H.264 Encoding of Multi-view video For Free viewpoint TV)

  • 신종홍
    • 디지털산업정보학회논문지
    • /
    • 제7권2호
    • /
    • pp.91-100
    • /
    • 2011
  • Free viewpoint TV can provide multi-angle view point images for viewer needs. In the real world, But all angle view point images can not be captured by camera. Only a few any angle view point images are captured by each camera. Group of the captured images is called multi-view image. Therefore free viewpoint TV wants to production of virtual sub angle view point images form captured any angle view point images. Interpolation methods are known of this problem general solution. To product interpolated view point image of correct angle need to depth image of multi-view image. Unfortunately, multi-view video including depth image is necessary to develop a new compression encoding technique for storage and transmission because of a huge amount of data. Layered depth image is an efficient representation method of multi-view video data. This method makes a data structure that is synthesis of multi-view color and depth image. This paper proposed enhanced compression method using layered depth image representation and H.264/AVC video coding technology. In experimental results, confirmed high compression performance and good quality reconstructed image.