• Title/Summary/Keyword: 3D Patches

Search Result 128, Processing Time 0.025 seconds

Preprocessing Method for Efficient Compression of Patch-based Image (패치 영상의 효율적 압축을 위한 전처리 방법)

  • Lee, Sin-Wook;Lee, Sun-Young;Chang, Eun-Youn;Hur, Nam-Ho;Jang, Euee-S.
    • Journal of Broadcast Engineering
    • /
    • v.13 no.1
    • /
    • pp.109-118
    • /
    • 2008
  • In mapping a texture image into a 3D mesh model for photo-realistic graphic applications, the compression of texture image is as important as geometry of 3D mesh. Typically, the size of the (compressed) texture image of 3D model is comparable to that of the (compressed) 3D mesh geometry. Most 3D model compression techniques are to compress the 3D mesh geometry, rather than to compress the texture image. Well-known image compression standards (i.e., JPEG) have been extensively used for texture image compression. However, such techniques are not so efficient when it comes to compress an image with texture patches, since the patches are little correlated. In this paper, we proposed a preprocessing method to substantially improve the compression efficiency of texture compression. From the experimental results, the proposed method was shown to be efficient in compression with a bit-saving from 23% to 45%.

Planar Patch Extraction from LiDAR Data Using Optimal Parameter Selection (최적 매개변수 선정을 이용한 라이다 데이터로부터 3차원 평면 추출)

  • Shin, Sung-Woong;Bang, Ki-In;Cho, Woo-Sug
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.97-103
    • /
    • 2011
  • LiDAR system has become a popular tool for generating 3D surface data such as Digital Surface Model. Extraction of valuable information, such as digital building models, from LiDAR data has been an attractive research subject. This research addresses to extract planar patches from LiDAR data. Planar patches are important primitives consisting of man-made objects such as buildings. In order to determine the best fitted planes, this research proposed a method to reduce/eliminate the impact of the outliers and the intersection areas of two planes. After finishing plane fitting, planar patches are segmented by pseudo color values which are calculated by determined three plane parameters for each LiDAR point. In addition, a segmentation procedure is conducted using the pseudo color values to find planar patches. This paper evaluates the feasibility of the proposed method using both airborne and terrestrial LiDAR data.

3D Road Modeling using LIDAR Data and a Digital Map (라이다데이터와 수치지도를 이용한 도로의 3차원 모델링)

  • Kim, Seong-Joon;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.165-173
    • /
    • 2008
  • This study aims at generating automatically three dimensional geometric models of roads using LIDAR data and a digital map. The main processes in the proposed method are (1) generating a polygon encompassing a road region using a road layer from the digital map, (2) extracting LIDAR points within the road region using the polygon, (3) organizing the points into surface patches and grouping the patches into surface clusters, (4) searching the road surface clusters and generating the surface model from the points linked to the clusters, (5) refining the boundary using a digital map. By applying the proposed method to real data, we successfully generated the linear and surface information of the roads.

A Mesh Watermarking Using Patch CEGI (패치 CEGI를 이용한 메쉬 워터마킹)

  • Lee Suk-Hwan;Kwon Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.67-78
    • /
    • 2005
  • We proposed a blind watermarking for 3D mesh model using the patch CEGIs. The CEGI is the 3D orientation histogram with complex weight whose magnitude is the mesh area and phase is the normal distance of the mesh from the designated origin. In the proposed algorithm we divide the 3D mesh model into the number of patch that determined adaptively to the shape of model and calculate the patch CEGIs. Some cells for embedding the watermark are selected according to the rank of their magnitudes in each of patches after calculating the respective magnitude distributions of CEGI for each patches of a mesh model. Each of the watermark bit is embedded into cells with the same rank in these patch CEGI. Based on the patch center point and the rank table as watermark key, watermark extraction and realignment process are performed without the original mesh. In the rotated model, we perform the realignment process using Euler angle before the watermark extracting. The results of experiment verify that the proposed algorithm is imperceptible and robust against geometrical attacks of cropping, affine transformation and vertex randomization as well as topological attacks of remeshing and mesh simplification.

Automatic 3D Object Digitizing and Its Accuracy Using Point Cloud Data (점군집 데이터에 의한 3차원 객체도화의 자동화와 정확도)

  • Yoo, Eun-Jin;Yun, Seong-Goo;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Recent spatial information technology has brought innovative improvement in both efficiency and accuracy. Especially, airborne LiDAR system(ALS) is one of the practical sensors to obtain 3D spatial information. Constructing reliable 3D spatial data infrastructure is world wide issue and most of the significant tasks involved with modeling manmade objects. This study aims to create a test data set for developing automatic building modeling methods by simulating point cloud data. The data simulates various roof types including gable, pyramid, dome, and combined polyhedron shapes. In this study, a robust bottom-up method to segment surface patches was proposed for generating building models automatically by determining model key points of the objects. The results show that building roofs composed of the segmented patches could be modeled by appropriate mathematical functions and the model key points. Thus, 3D digitizing man made objects could be automated for digital mapping purpose.

A Study of a Surface Modeling Interpolating a Polygonal Curve Net Constructed from Scattered Points (점군으로부터 형성된 다각곡선망을 보간하는 곡면모델링에 관한 연구)

  • Ju, Sang-Yoon;Jun, Cha-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.529-540
    • /
    • 1995
  • The paper deals with a procedure for constructing a composite surface interpolating a polygonal curve mesh defined from 3D scattered points. The procedure consists of a poly-angulation, construction of a curve net, and interpolation of the curve net. The poly-angulation contains a stage that changes a triangular edge net obtained from a triangulation into a poly-angular edge net. A curve net is constructed by replacing edges on the edge net with cubic Bezier curves. Finally, inside of an n-sided polygon is interpolated by n subdivided triangular subpatches. The method interpolates given point data with relatively few triangular subpatches. For an n-sided polygon, our method constructs an interpolant with n subdivided triangular subpatches while the existing triangular surface modeling needs 3(n-2) subpatches. The obtained surface is composed of quartic triangular patches which are $G^1$-continuous to adjacent patches.

  • PDF

Similarity-Based Patch Packing Method for Efficient Plenoptic Video Coding in TMIV

  • Kim, HyunHo;Kim, Yong-Hwan
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.250-252
    • /
    • 2022
  • As immersive video contents have started to emerge in the commercial market, research on it is required. For this, efficient coding methods for immersive video are being studied in the MPEG-I Visual workgroup, and they released Test Model for Immersive Video (TMIV). In current TMIV, the patches are packed into atlas in order of patch size. However, this simple patch packing method can reduce the coding efficiency in terms of 2D encoder. In this paper, we propose patch packing method which pack the patches into atlases by using the similarity of each patch for improving coding efficiency of 3DoF+ video. Experimental result shows that there is a 0.3% BD-rate savings on average over the anchor of TMIV.

  • PDF

U-slot Microstrip Antenna with U-shaped Parasitic Patches (U-형태의 기생 패치를 가지는 U-슬롯 마이크로스트립 안테나)

  • Kim, Ji-Hyung;Oh, Don-Jin;Park, Ik--Mo;Park, Yong-Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.428-434
    • /
    • 2009
  • In this paper, we propose an U-slot microstrip antenna with the U-shaped parasitic patches. U-slot and parasitic patches make two resonant frequencies and one additional resonant frequency, respectively, so that the impedance band-width of the antenna is expanded. The size of radiator part is $64{\times}53\;mm^2$ and the entire size of the antenna is $150{\times}150{\times}11.5\;mm^3$. The measured bandwidth is $1.85{\sim}2.40\;GHz$. Thus, our antenna can be used for DCS1900, WCDMA and WiMax services. The radiation characteristic is almost same in the bandwidth, the beam width is about $60^{\circ}$, and the gain is more than 7 dBi.

Motion Capture System using Integrated Pose Sensors (융합센서 기반의 모션캡처 시스템)

  • Kim, Byung-Yul;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.65-74
    • /
    • 2010
  • At the aim of solving the problems appearing in traditional optical motion capturing systems such as the interference among multiple patches and the complexity of sensor and patch allocations, this paper proposes a new motion capturing system which is composed of a single camera and multiple motion sensors. A motion sensor is consisted of an acceleration sensor and a gyro sensor to detect the motion of a patched body and the orientation (roll, pitch, and yaw) of the motion, respectively. Although Image information provides the positions of the patches in 2D, the orientation information of the patch motions acquired by the motion sensors can generate 3D pose of the patches using simple equations. Since the proposed system uses the minimum number of sensors to detect the relative pose of a patch, it is easy to install on a moving body and can be economically used for various applications. The performance and the advantages of the proposed system have been proved by the experiments.

Recovering the Colors of Objects from Multiple Near-IR Images

  • Kim, Ari;Oh, In-Hoo;Kim, Hong-Suk;Park, Seung-Ok;Park, Youngsik
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.102-111
    • /
    • 2015
  • This paper proposes an algorithm for recovering the colors of objects from multiple near-infrared (near-IR) images. The International Commission on Illumination (CIE) color coordinates of objects are recovered from a series of gray images captured under multiple spectral near-IR illuminations using polynomial regression. The feasibility of the proposed algorithm is tested experimentally by using 24 color patches of the Color Rendition Chart. The experimental apparatus is composed of a monochrome digital camera without an IR cut-off filter and a custom-designed LED illuminator emitting multiple spectral near-IR illuminations, with peak wavelengths near the red edge of the visible band, namely at 700, 740, 780, and 860 nm. The average color difference between the original and the recovered colors for all 24 patches was found to be 11.1. However, if some particular patches with high value are disregarded, the average color difference is reduced to 4.2, and this value is within the acceptability tolerance for complex image on the display.