• Title/Summary/Keyword: 3D Model Segmentation

Search Result 148, Processing Time 0.028 seconds

Surface Rendering in Abdominal Aortic Aneurysm by Deformable Model (복부대동맥의 3차원 표면모델링을 위한 가변형 능동모델의 적용)

  • Choi, Seok-Yoon;Kim, Chang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.266-274
    • /
    • 2009
  • An abdominal aortic aneurysm occurs most commonly in older individuals (between 65 and 75), and more in men and smokers. The most important complication of an abdominal aortic aneurysm is rupture, which is most often a fatal event. An abdominal aortic aneurysm weakens the walls of the blood vessel, leaving it vulnerable to bursting open, or rupturing, and spilling large amounts of blood into the abdominal cavity. surface modeling is very useful to surgery for quantitative analysis of abdominal aortic aneurysm. the 3D representation and surface modeling an abdominal aortic aneurysm structure taken from Multi Detector Computed Tomography. The construction of the 3D model is generally carried out by staking the contours obtained from 2D segmentation of each CT slice, so the quality of the 3D model strongly defends on the precision of segmentation process. In this work we present deformable model algorithm. deformable model is an energy-minimizing spline guided by external constraint force. External force which we call Gradient Vector Flow, is computed as a diffusion of a gradient vectors of gray level or binary edge map derived from the image. Finally, we have used snakes successfully for abdominal aortic aneurysm segmentation the performance of snake was visually and quantitatively validated by experts.

Deep Learning Approach for Automatic Discontinuity Mapping on 3D Model of Tunnel Face (터널 막장 3차원 지형모델 상에서의 불연속면 자동 매핑을 위한 딥러닝 기법 적용 방안)

  • Chuyen Pham;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.508-518
    • /
    • 2023
  • This paper presents a new approach for the automatic mapping of discontinuities in a tunnel face based on its 3D digital model reconstructed by LiDAR scan or photogrammetry techniques. The main idea revolves around the identification of discontinuity areas in the 3D digital model of a tunnel face by segmenting its 2D projected images using a deep-learning semantic segmentation model called U-Net. The proposed deep learning model integrates various features including the projected RGB image, depth map image, and local surface properties-based images i.e., normal vector and curvature images to effectively segment areas of discontinuity in the images. Subsequently, the segmentation results are projected back onto the 3D model using depth maps and projection matrices to obtain an accurate representation of the location and extent of discontinuities within the 3D space. The performance of the segmentation model is evaluated by comparing the segmented results with their corresponding ground truths, which demonstrates the high accuracy of segmentation results with the intersection-over-union metric of approximately 0.8. Despite still being limited in training data, this method exhibits promising potential to address the limitations of conventional approaches, which only rely on normal vectors and unsupervised machine learning algorithms for grouping points in the 3D model into distinct sets of discontinuities.

3D Modeling of Cerebral Hemorrhage using Gradient Vector Flow (기울기 벡터 플로우를 이용한 뇌출혈의 3차원 모델링)

  • Seok-Yoon Choi
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.231-237
    • /
    • 2024
  • Brain injury causes persistent disability in survivors, and epidural hematoma(EDH) and subdural hematoma (SDH) resulting from cerebral hemorrhage can be considered one of the major clinical diseases. In this study, we attempted to automatically segment and hematomas due to cerebral hemorrhage in three dimensions based on computed tomography(CT) images. An improved GVF(gradient vector flow) algorithm was implemented for automatic segmentation of hematoma. After calculating and repeating the gradient vector from the image, automatic segmentation was performed and a 3D model was created using the segmentation coordinates. As a result of the experiment, accurate segmentation of the boundaries of the hematoma was successful. The results were found to be good even in border areas and thin hematoma areas, and the intensity, direction of spread, and area of the hematoma could be known in various directions through the 3D model. It is believed that the planar information and 3D model of the cerebral hemorrhage area developed in this study can be used as auxiliary diagnostic data for medical staff.

Segmentation and Classification of Lidar data

  • Tseng, Yi-Hsing;Wang, Miao
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.153-155
    • /
    • 2003
  • Laser scanning has become a viable technique for the collection of a large amount of accurate 3D point data densely distributed on the scanned object surface. The inherent 3D nature of the sub-randomly distributed point cloud provides abundant spatial information. To explore valuable spatial information from laser scanned data becomes an active research topic, for instance extracting digital elevation model, building models, and vegetation volumes. The sub-randomly distributed point cloud should be segmented and classified before the extraction of spatial information. This paper investigates some exist segmentation methods, and then proposes an octree-based split-and-merge segmentation method to divide lidar data into clusters belonging to 3D planes. Therefore, the classification of lidar data can be performed based on the derived attributes of extracted 3D planes. The test results of both ground and airborne lidar data show the potential of applying this method to extract spatial features from lidar data.

  • PDF

Synthetic Computed Tomography Generation while Preserving Metallic Markers for Three-Dimensional Intracavitary Radiotherapy: Preliminary Study

  • Jin, Hyeongmin;Kang, Seonghee;Kang, Hyun-Cheol;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.172-178
    • /
    • 2021
  • Purpose: This study aimed to develop a deep learning architecture combining two task models to generate synthetic computed tomography (sCT) images from low-tesla magnetic resonance (MR) images to improve metallic marker visibility. Methods: Twenty-three patients with cervical cancer treated with intracavitary radiotherapy (ICR) were retrospectively enrolled, and images were acquired using both a computed tomography (CT) scanner and a low-tesla MR machine. The CT images were aligned to the corresponding MR images using a deformable registration, and the metallic dummy source markers were delineated using threshold-based segmentation followed by manual modification. The deformed CT (dCT), MR, and segmentation mask pairs were used for training and testing. The sCT generation model has a cascaded three-dimensional (3D) U-Net-based architecture that converts MR images to CT images and segments the metallic marker. The performance of the model was evaluated with intensity-based comparison metrics. Results: The proposed model with segmentation loss outperformed the 3D U-Net in terms of errors between the sCT and dCT. The structural similarity score difference was not significant. Conclusions: Our study shows the two-task-based deep learning models for generating the sCT images using low-tesla MR images for 3D ICR. This approach will be useful to the MR-only workflow in high-dose-rate brachytherapy.

3D mechanical model based pulmonary nodule segmentation in CT images (CT영상용 3차원 역학 모델 기반 폐 결절 분할 방법)

  • Yoon, Ji-Seok;Choi, Tae-Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.319-326
    • /
    • 2015
  • In this paper, a 3D mechanical model based on pulmonary nodule segmentation method is proposed. The proposed method has three main parts. First, an initial 3D mechanical model is generated. The model is made up of many triangle elements resulting in forming whole shape of the model as sphere. Second, points of the model are deformed, and finally internal and external energies according to each deformation are calculated. The internal energy is determined by the model shape, and the external energy is determined by intensity. After the model is deformed, the process of searching the minimum energy generated by the deformation is executed repetitively. If the model energy converges, the nodule is segmented by using the proposed model. The proposed method greatly improves the result compared with conventional methods.

Accurate Parked Vehicle Detection using GMM-based 3D Vehicle Model in Complex Urban Environments (가우시안 혼합모델 기반 3차원 차량 모델을 이용한 복잡한 도시환경에서의 정확한 주차 차량 검출 방법)

  • Cho, Younggun;Roh, Hyun Chul;Chung, Myung Jin
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • Recent developments in robotics and intelligent vehicle area, bring interests of people in an autonomous driving ability and advanced driving assistance system. Especially fully automatic parking ability is one of the key issues of intelligent vehicles, and accurate parked vehicles detection is essential for this issue. In previous researches, many types of sensors are used for detecting vehicles, 2D LiDAR is popular since it offers accurate range information without preprocessing. The L shape feature is most popular 2D feature for vehicle detection, however it has an ambiguity on different objects such as building, bushes and this occurs misdetection problem. Therefore we propose the accurate vehicle detection method by using a 3D complete vehicle model in 3D point clouds acquired from front inclined 2D LiDAR. The proposed method is decomposed into two steps: vehicle candidate extraction, vehicle detection. By combination of L shape feature and point clouds segmentation, we extract the objects which are highly related to vehicles and apply 3D model to detect vehicles accurately. The method guarantees high detection performance and gives plentiful information for autonomous parking. To evaluate the method, we use various parking situation in complex urban scene data. Experimental results shows the qualitative and quantitative performance efficiently.

Artificial Intelligence Image Segmentation for Extracting Construction Formwork Elements (거푸집 부재 인식을 위한 인공지능 이미지 분할)

  • Ayesha Munira, Chowdhury;Moon, Sung-Woo
    • Journal of KIBIM
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Concrete formwork is a crucial component for any construction project. Artificial intelligence offers great potential to automate formwork design by offering various design options and under different criteria depending on the requirements. This study applied image segmentation in 2D formwork drawings to extract sheathing, strut and pipe support formwork elements. The proposed artificial intelligence model can recognize, classify, and extract formwork elements from 2D CAD drawing image and training and test results confirmed the model performed very well at formwork element recognition with average precision and recall better than 80%. Recognition systems for each formwork element can be implemented later to generate 3D BIM models.

Automated texture mapping for 3D modeling of objects with complex shapes --- a case study of archaeological ruins

  • Fujiwara, Hidetomo;Nakagawa, Masafumi;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1177-1179
    • /
    • 2003
  • Recently, the ground-based laser profiler is used for acquisition of 3D spatial information of a rchaeological objects. However, it is very difficult to measure complicated objects, because of a relatively low-resolution. On the other hand, texture mapping can be a solution to complement the low resolution, and to generate 3D model with higher fidelity. But, a huge cost is required for the construction of textured 3D model, because huge labor is demanded, and the work depends on editor's experiences and skills . Moreover, the accuracy of data would be lost during the editing works. In this research, using the laser profiler and a non-calibrated digital camera, a method is proposed for the automatic generation of 3D model by integrating these data. At first, region segmentation is applied to laser range data to extract geometric features of an object in the laser range data. Various information such as normal vectors of planes, distances from a sensor and a sun-direction are used in this processing. Next, an image segmentation is also applied to the digital camera images, which include the same object. Then, geometrical relations are determined by corresponding the features extracted in the laser range data and digital camera’ images. By projecting digital camera image onto the surface data reconstructed from laser range image, the 3D texture model was generated automatically.

  • PDF

Performance evaluation of vessel extraction algorithm applied to Aortic root segmentation in CT Angiography (CT Angiography 영상에서 대동맥 추출을 위한 혈관 분할 알고리즘 성능 평가)

  • Kim, Tae-Hyong;Hwang, Young-sang;Shin, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.196-204
    • /
    • 2016
  • World Health Organization reported that heart-related diseases such as coronary artery stenoses show the highest occurrence rate which may cause heart attack. Using Computed Tomography angiography images will allow radiologists to detect and have intervention by creating 3D roadmapping of the vessels. However, it is often complex and difficult do reconstruct 3D vessel which causes very large amount of time and previous researches were studied to segment vessels more accurate automatically. Therefore, in this paper, Region Competition, Geodesic Active Contour (GAC), Multi-atlas based segmentation and Active Shape Model algorithms were applied to segment aortic root from CTA images and the results were analyzed by using mean Hausdorff distance, volume to volume measure, computational time, user-interaction and coronary ostium detection rate. As a result, Extracted 3D aortic model using GAC showed the highest accuracy but also showed highest user-interaction results. Therefore, it is important to improve automatic segmentation algorithm in future