• Title/Summary/Keyword: 3D Model GIS

Search Result 213, Processing Time 0.037 seconds

DEVELOPMENT OF AUGMENTED 3D STEREO URBAN CITY MODELLING SYSTEM BASED ON ANAGLYPH APPROACH

  • Kim, Hak-Hoon;Kim, Seung-Yub;Lee, Ki-Won
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.98-101
    • /
    • 2006
  • In general, stereo images are widely used to remote sensing or photogrametric applications for the purpose of image understanding and feature extraction or cognition. However, the most cases of these stereo-based application deal with 2-D satellite images or the airborne photos so that its main targets are generation of small-scaled or large-scaled DEM(Digital Elevation Model) or DSM(Digital Surface Model), in the 2.5-D. Contrast to these previous approaches, the scope of this study is to investigate 3-D stereo processing and visualization of true geo-referenced 3-D features based on anaglyph technique, and the aim is at the prototype development for stereo visualization system of complex typed 3-D GIS features. As for complex typed 3-D features, the various kinds of urban landscape components are taken into account with their geometric characteristics and attributes. The main functions in this prototype are composed of 3-D feature authoring and modeling along with database schema, stereo matching, and volumetric visualization. Using these functions, several technical aspects for migration into actual 3-D GIS application are provided with experiment results. It is concluded that this result will contribute to more specialized and realistic applications by linking 3-D graphics with geo-spatial information.

  • PDF

Virtual Campus Development using 3D GIS (3D GIS를 활용한 가상 캠퍼스 구현)

  • KSong, Sang-Hun;Jeong, Jong-Pil
    • KSCI Review
    • /
    • v.14 no.2
    • /
    • pp.147-152
    • /
    • 2006
  • Data size of moving current GIS great exponentially from 2D to 3D and the processing speed becomes slow thereby and user's real time rendering request is growing. Have problem that time and expense to process data of bulky quantity produce constraint condition of the processing speed. third dimension processing skill, virtual reality processing skill etc. and third dimension GIS about space data of bulk much overmuch to materialize. In this paper DEM data that acquire from satellite or aviation solve these problem embody virtual city in web save topography information that visualization to 3D visualization by VRML, and use modelling tool and acquire 3D campus information for building and road. 3D information acquired this to express texture and natural gifts that have truth stuff more to thing through near texture mapping work 3D imagination illustration of web based embody can.

  • PDF

3D GIS Network Modeling of Indoor Building Space Using CAD Plans (CAD 도면을 이용한 건축물 내부 공간의 3차원 GIS 네트워크 모델링)

  • Kang Jung A;Yom Jee-Hong;Lee Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.375-384
    • /
    • 2005
  • Three dimensional urban models are being increasingly applied for various purposes such as city planning, telecommunication cell planning, traffic analysis, environmental monitoring and disaster management. In recent years, technologies from CAD and GIS are being merged to find optimal solutions in three dimensional modeling of urban buildings. These solutions include modeling of the interior building space as well as its exterior shape visualization. Research and development effort in this area has been performed by scientists and engineers from Computer Graphics, CAD and GIS. Computer Graphics and CAD focussed on precise and efficient visualization, where as GIS emphasized on topology and spatial analysis. Complementary research effort is required for an effective model to serve both visualization and spatial analysis purposes. This study presents an efficient way of using the CAD plans included in the building register documents to reconstruct the internal space of buildings. Topological information was built in the geospatial database and merged with the geometric information of CAD plans. as well as other attributal data from the building register. The GIS network modeling method introduced in this study is expected to enable an effective 3 dimensional spatial analysis of building interior which is developing with increasing complexity and size.

3D Visualization Approaches for Evaluating Location Solution Performances (시설물 접근성 분석을 위한 GIS의 3차원 시각화 기법 적용)

  • Kim, Young-Hoon;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.21-32
    • /
    • 2003
  • This paper discusses the design of location optimization visualization and feasibility of 3 dimensional visualization techniques. In generic GIS visualization of location analysis, 2 dimensional visualization techniques have been used to map location elements and model solution, such as displaying demand and supply points, drawing connecting lines(e. g. spider line) of optimal locations to their demands, and representing density of location variations. Nevertheless, current GIS and location analysis literatures have little attentions in 3D visualization applications for location optimization problems. Previous research has been neglected 3D visualization of solution performances and its evaluation of solution quality. Consequently, this paper demonstrates potential benefits of 3D visualization techniques and its appropriate GIS applications for location optimization analysis. The visualization effectiveness of 3D approaches is examined in terms of spatial accessibility, and solution performance of optimal location models is evaluated. Finally, this paper proposes extensive 3D visualization perspectives for location analysis and GIS research as a further research agenda.

  • PDF

Urban flood digital twin platform 2D/3D visualization technology (도시홍수 디지털 트윈 플랫폼 2D/3D 가시화 기술(I))

  • Gyeoung-Hyeon Kim;Bon-Hyun Koo;Tae-Young Ham;Kyu-Cheoul Shim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.455-455
    • /
    • 2023
  • 본 연구에서는 도시홍수 피해 저감 및 회복을 위한 도시홍수 연관 데이터 가시화 및 GIS 기반 LoD 1 수준 가시화 기술 개발을 진행하였다. 도시홍수는 불투수지역의 증가로 인한 첨두 홍수의 증가 및 도달 시간의 단축, 도시 내수배제의 불량으로 인한 주택지 및 상가 공장지 등의 침수에 의한 피해가 발생하는 현상이며, 도시홍수 예측 모델을 수행하기 위하여 수집한 기상, 하천 및 수자원, 토양 등의 데이터를 2차원 가시화하고 도심 지역의 지형 DEM(Digital Elevation Model) 데이터 및 건축물 DSM(Digital Surface Model) 데이터를 기반으로 3D 가시화를 진행하였다. 기상, 하천 및 수자원 관측 등의 데이터를 실시간으로 수집하며 관련 데이터를 도시홍수 디지털 트윈 플랫폼의 수문기상정보를 통하여 가시화 제공하며 토양 및 지리정보는 WMS 레이어를 기반으로 2D 가시화한다. 건축물 데이터의 경우 GIS 정보를 기반으로 하는 3D 객체 배치를 위하여 WGS84 타원체를 활용하여 EPSG:4326 좌표계를 적용하여 가시화하였다. 건축물 가시화는 PostgreSQL로 구축된 데이터를 Geoserver를 활용하여 자동으로 층 정보를 통한 건축물의 높이를 계산하도록 하였으며, CesiumJS를 적용하여 웹 기반 도시홍수 디지털 트윈 플랫폼을 개발하였고 추후 LoD 3 수준으로의 확대 적용 기반을 마련하였다.

  • PDF

A Design of 3D Visualization Model based on GIS (GIS 기반의 3차원 시각화 모델의 설계)

  • 한정규;황수찬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.27-29
    • /
    • 1999
  • 가상현실 시스템에 대한 연구들은 대부분 현실세계 데이터를 컴퓨팅 세계의 데이터로 변환하기 위한 효율적인 방법론에 대한 연구가 주를 이루고 있다. 지리정보시스템(GIS)의 경우 정확한 실사를 통한 지리정보의 확보와 그래픽 시각화를 통한 신뢰성 있는 데이터의 제공을 주요 목적으로 삼는다. 본 논문은 지리정보시스템의 데이터모델을 기반으로 3차원 시각화를 위한 지형 데이터 모델과 가상 이미징 객체모델을 소개한다.

  • PDF

Application of GML and X3D to 3D Urban Data Modeling: A Practical Approach

  • Kim, Hak-Hoon;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.43-53
    • /
    • 2007
  • In this study, two standard specifications such as GML (Geography Markup Language) from OGC (Open Geo-spatial Consortium, Inc.) and X3D (extensible 3D) from Web3D consortium were dealt with for a web-based 3D urban application without using commercialized tools. In the first step of this study, DEM (Digital Elevation Model) and 3D GIS data sets were converted to GML structure with attribute schema. Then, these GML elements were projected onto a common coordinate system, and they were converted to the X3D format for visualization on web browser. In this work, a 3D urban data model, as a simple framework model, is extended to a framework model having further detailed information, depending upon application levels. Conclusively, this study is to demonstrate for practical uses of GML and X3D in 3D urban application and this approach can be applied to other application domains regarding system integrators and data sharing communities on distributed environments.

Developing Data Fusion Method for Indoor Space Modeling based on IndoorGML Core Module

  • Lee, Jiyeong;Kang, Hye Young;Kim, Yun Ji
    • Spatial Information Research
    • /
    • v.22 no.2
    • /
    • pp.31-44
    • /
    • 2014
  • According to the purpose of applications, the application program will utilize the most suitable data model and 3D modeling data would be generated based on the selected data model. In these reasons, there are various data sets to represent the same geographical features. The duplicated data sets bring serious problems in system interoperability and data compatibility issues, as well in finance issues of geo-spatial information industries. In order to overcome the problems, this study proposes a spatial data fusion method using topological relationships among spatial objects in the feature classes, called Topological Relation Model (TRM). The TRM is a spatial data fusion method implemented in application-level, which means that the geometric data generated by two different data models are used directly without any data exchange or conversion processes in an application system to provide indoor LBSs. The topological relationships are defined and described by the basic concepts of IndoorGML. After describing the concepts of TRM, experimental implementations of the proposed data fusion method in 3D GIS are presented. In the final section, the limitations of this study and further research are summarized.

Modification of Spatial Grid Based Distributed Model Considering River Basin Characteristics (유역특성을 반영한 공간격자기반의 분포형모형 개선)

  • Park, Jin Hyeog;Hur, Young Teck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.431-436
    • /
    • 2008
  • Recently, the rapid development of GIS technology has made it possible to handle a various data associated with spatially hydrological parameters with their attribute information. Therefore, there has been a shift in focus from lumped runoff models to distributed runoff models, as the latter can consider temporal and spatial variations of discharge. In this research, a distributed rainfall-runoff model based on physical kinematic wave for analysis of surface and river flow was used to simulate temporal and spatial distribution of long-term discharge. The snowfall and melting process model based on Hydro-BEAM was developed, and various hydrological parameters for input data of the model was extracted from basic GIS data such as DEM, land cover and soil map. The developed model was applied for the Shonai River basin(532) in Japan, which has sufficient meteorological and hydrological data, and displayed precise runoff results to be compared to the hydrograph.

3D Surface Representation and Manipulation Scheme for Web-based 3D Geo-Processing

  • Choe, Seung-Keol;Kim, Kyong-Ho;Lee, Jong-Hun;Yang, Young-Kyu
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1999.12a
    • /
    • pp.66-71
    • /
    • 1999
  • For given 3D geographic data which is usually of DEM(Data Elevation Model) format, we have to represent and manipulate the data in various ways. For example, we have to draw a part of them in drawing canvas. To do this we give users a way of selecting area they want to visualize. And we have to give a base tool for users to select the local area which can be chosen for some geographic operation. In this paper, we propose a 3D data processing method for representation and manipulation. The method utilizes the major properties of DEM and TIN(Triangular Irregular Network), respectively. Furthermore, by approximating DEM with a TIN of an appropriate resolution, we can support a fast and realistic surface modeling. We implement the structure with the following 4 level stages. The first is an optimal resolution of DEM which represent all of wide range of geographic data. The second is the full resolution DEM which is a subarea of original data generated by user's selection in our implemeatation. The third is the TIN approximation of this data with a proper resolution determined by the relative position with the camera. And the last step is multi-resolution TIN data whose resolution is dynamically decided by considering which direction user take notice currently. Specialty, the TIN of the last step is designed for realtime camera navigation. By using the structure we implemented realtime surface clipping, efficient approximation of height field and the locally detailed surface LOD(Level of Detail). We used the initial 10-meter sampling DEM data of Seoul, KOREA and implement the structure to the 3D Virtual GIS based on the Internet.

  • PDF