• 제목/요약/키워드: 3D Measurement System

검색결과 1,290건 처리시간 0.035초

Stereoscopic micro-PTV기법의 개발 (Development of Stereoscopic Micro-PTV Method)

  • 유청환;김형범
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.109-113
    • /
    • 2007
  • Micro-PIV is a well-known method for measurement of two- dimensional, two-component velocity in the microfluidic devices. Lots of the micro fluidic devices generate three-dimensional flow and 3D measurement of velocity is helpful to understand the physics of micro flow phenomena. In this study, we developed new micro 3D measurement method by applying 2-frame PTV in stereoscopic micro system. In this study, we did the validation study of SMPTV by using the simulated flow model to verify the accuracy and the feasibility of measurement and compared with SMPIV method. The results showed that SMPTV provides better spatial resolution and measurement accuracy than SMPIV method.

  • PDF

비전을 이용한 곡면변형률 측정의 정확도 및 정밀도 향상에 관한 연구 (A Study on the Improvement of Accuracy and Precision in the Vision-Based Surface-Strain Measurement)

  • 김두수;김형종
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.294-305
    • /
    • 1999
  • A vision-based surface-strain measurement system has been still improved since the authors devel-oped the first version of it. New algorithms for the subpixel measurement and surface smoothing are introduced to improve the accuracy and precision in the present study. The effects of these algorithms are investigated by error analysis. And the equations required to calculate 3D surface-strain of a shell element are derived from the shape function of a linear solid finite-element. The influences of external factors on the measurement error are also examined, and several trials are made to obtain possible optimal condition which may minimize the error.

  • PDF

근골격계 부하 평가를 위한 2차원 자세 측정 시스템 개발 (Development of a 2D Posture Measurement System to Evaluate Musculoskeletal Workload)

  • 박성준;박재규;최재호
    • 대한인간공학회지
    • /
    • 제24권3호
    • /
    • pp.43-52
    • /
    • 2005
  • A two-dimensional posture measurement system was developed to evaluate the risks of work-related musculoskeletal disorders(MSDs) easily on various conditions of work. The posture measurement system is an essential tool to analyze the workload for preventing work-related musculoskeletal disorders. Although several posture measurement systems have been developed for workload assessment, some restrictions in industry still exist because of its difficulty on measuring work postures. In this study, an image recognition algorithm was developed based on a neural network method to measure work posture. Each joint angle of human body was automatically measured from the recognized images through the algorithm, and the measurement system makes it possible to evaluate the risks of work-related musculoskeletal disorders easily on various working conditions. The validation test on upper body postures was carried out to examine the accuracy of the measured joint angle data from the system, and the results showed good measuring performance for each joint angle. The differences between the joint angles measured directly and the angles measured by posture measurement software were not statistically significant. It is expected that the result help to properly estimate physical workload and can be used as a postural analysis system to evaluate the risk of work-related musculoskeletal disorders in industry.

능동적 원격감시를 위한 스테레오 카메라 시스템의 개발 (Development of the Stereo Camera System for Active Remote Monitoring)

  • 박강;조대희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.437-441
    • /
    • 1997
  • In the conventional remote monitoring system, a user in front of a computer monitor can acquire only 2 dimensional visual information in a passive way. Thus, even thoght the user finds an interesting object from the video image, helshe can hardly acquire additional information on the object such as name. 311 shape, etc. In this paper, an active monitoring system that shows additional information on the selected object is proposed. The active remote monitoring system can calculate the 3D position of the object that is selected in the video images. Then, using the 3D position of the object, other information on the object can be retrieved from the database and shown on the screen. To calculate the 3D position of the object, 2 CCD cameras that can be tilted and panned using 3 stepping motors are used. The algorithm of 3D position calculation and the result of experiments are explained.

  • PDF

Capturing Distance Parameters Using a Laser Sensor in a Stereoscopic 3D Camera Rig System

  • Chung, Wan-Young;Ilham, Julian;Kim, Jong-Jin
    • 센서학회지
    • /
    • 제22권6호
    • /
    • pp.387-392
    • /
    • 2013
  • Camera rigs for shooting 3D video are classified as manual, motorized, or fully automatic. Even in an automatic camera rig, the process of Stereoscopic 3D (S3D) video capture is very complex and time-consuming. One of the key time-consuming operations is capturing the distance parameters, which are near distance, far distance, and convergence distance. Traditionally these distances are measured by tape measure or triangular indirect measurement methods. These two methods consume a long time for every scene in shot. In our study, a compact laser distance sensing system with long range distance sensitivity is developed. The system is small enough to be installed on top of a camera and the measuring accuracy is within 2% even at a range of 50 m. The shooting time of an automatic camera rig equipped with the laser distance sensing system can be reduced significantly to less than a minute.

3차원 형상 계측에 의한 인대의 하반신 형태 파악 (The Analysis of the Lower Part of Dress Forms Using Three-Dimensional Measurement System)

  • 이명희;정희경
    • 한국생활과학회지
    • /
    • 제14권2호
    • /
    • pp.303-312
    • /
    • 2005
  • The purpose of this research is to analyze the lower part of dress forms with different sectional rotation-angles ($e.g.\;9^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ}$) using three-dimensional measurement system and to investigate measurement properties for dress making. The dress forms used in this experiment were size 8 and six types: four from Korea and two from Japan. The instrument and tools for three-dimensional measurement was Whole Body 3D scanner (Exyma-WBS2H). The analysis program used in this experiment was Rapid Form 2004 PP1 (INUS technology, Inc, Korea). The measurement of dress forms was done three times with different sectional rotation-angles and its data were analyzed using SPSS WIN 10.0 Package. The following results were obtained: 1. With mean and standard deviation of each measured part, it was found out that the dress forms from two countries were different in size per each part. For example, the Japanese one was relatively large in middle hip and hip, compared to the Korean one. 2. The 3D analysis of the sectional rotation-angles revealed some differences between the two dress forms in sectional length per each part. 3. With cluster analysis results, it was found that there were definite differences among measurements per each part, especially in $30^{\circ}\;and\;45^{\circ}$ sections. 4. The proportion of the dress forms showed significant differences in the curvature between center and side section of the lower parts. In addition, the shapes on the horizontal section map of the four levels (waist, middle hip, hip, and bottom) were analyzed.

  • PDF

Development of 3D-based On-Machine Measurement Operating System

  • Yoon Gil-Sang;Heo Young-Moo;Kim Gun-Hee;Cho Myeong-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.45-50
    • /
    • 2005
  • This paper proposed an efficient manufacturing system using the OMM (on-machine measurement) system. The OMM system is software-based 3D modeler for inspection on machine, and it is interfaced with machine tools via RS232C. The software is composed of two inspection modules; one is touch probe operating module, and the other is laser displacement sensor operating module. The module for touch probe needs the inspection feature extracted from CAD data. The touch probe moves to workpiece by three operating modes as follows: manual, general and automatic mode. The operating module of the laser displacement sensor is used to inspect profiles and very small holes. An advantage of this inspection method is the ability to execute on-line inspection during machining or afterward. The efficiency of proposed system which can predict and define the machining errors of each process was verified, so the developed system was applied to inspect a mold-base (cavity, core).

3차원 거리 측정 장치를 이용한 물체 인식 (Object Recognition using 3D Depth Measurement System.)

  • 김성찬;고수홍;김형석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.941-942
    • /
    • 2006
  • A depth measurement system to recognize 3D shape of objects using single camera, line laser and a rotating mirror has been investigated. The camera and the light source are fixed, facing the rotating mirror. The laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The camera detects the laser light location on object surfaces through the same mirror. The scan over the area to be measured is done by mirror rotation. The Segmentation process of object recognition is performed using the depth data of restored 3D data. The Object recognition domain can be reduced by separating area of interest objects from complex background.

  • PDF

레이저 구조광 영상기반 3차원 스캐너 개발 (Development of 3D Scanner Based on Laser Structured-light Image)

  • 고영준;이수영;이준오
    • 제어로봇시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.186-191
    • /
    • 2016
  • This paper addresses the development of 3D data acquisition system (3D scanner) based laser structured-light image. The 3D scanner consists of a stripe laser generator, a conventional camera, and a rotation table. The stripe laser onto an object has distortion according to 3D shape of an object. By analyzing the distortion of the laser stripe in a camera image, the scanner obtains a group of 3D point data of the object. A simple semiconductor stripe laser diode is adopted instead of an expensive LCD projector for complex structured-light pattern. The camera has an optical filter to remove illumination noise and improve the performance of the distance measurement. Experimental results show the 3D data acquisition performance of the scanner with less than 0.2mm measurement error in 2 minutes. It is possible to reconstruct a 3D shape of an object and to reproduce the object by a commercially available 3D printer.

Compensation of Installation Errors in a Laser Vision System and Dimensional Inspection of Automobile Chassis

  • Barkovski Igor Dunin;Samuel G.L.;Yang Seung-Han
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.437-446
    • /
    • 2006
  • Laser vision inspection systems are becoming popular for automated inspection of manufactured components. The performance of such systems can be enhanced by improving accuracy of the hardware and robustness of the software used in the system. This paper presents a new approach for enhancing the capability of a laser vision system by applying hardware compensation and using efficient analysis software. A 3D geometrical model is developed to study and compensate for possible distortions in installation of gantry robot on which the vision system is mounted. Appropriate compensation is applied to the inspection data obtained from the laser vision system based on the parameters in 3D model. The present laser vision system is used for dimensional inspection of car chassis sub frame and lower arm assembly module. An algorithm based on simplex search techniques is used for analyzing the compensated inspection data. The details of 3D model, parameters used for compensation and the measurement data obtained from the system are presented in this paper. The details of search algorithm used for analyzing the measurement data and the results obtained are also presented in the paper. It is observed from the results that, by applying compensation and using appropriate algorithms for analyzing, the error in evaluation of the inspection data can be significantly minimized, thus reducing the risk of rejecting good parts.