• Title/Summary/Keyword: 3D Magnetic Circuit

Search Result 131, Processing Time 0.04 seconds

The optimal design by Micro On-Off Valve analysis (Micro On-Off Valve 해석에 의한 최적 설계)

  • Kim D.S.;Park S.W.;Koh C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.285-290
    • /
    • 2005
  • Micro On-Off valves are currently recognized as the core technology in the fields of the micro fluid chip fur medical applications and production lines of semi-conduct chip. Micro valves that operate by compressed air need the high-speed responsibility, repeatability, the absorbability and the uniform pressure by the poppet. In this study, Micro On-Off valves that posses the high-speed responsibility and the high rate of flow have designed and analyzed through the law of equivalent magnetic circuit and Finite Element Method (FEM) respectively. In case of poppet, Flow field characteristic was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D distribution curve of the force by working the front poppet.

  • PDF

3D finite element analysis of disk type single phase SRM considering the saturation (포화를 고려한 디스트형 단상 SRM의 3차원 유한 요소해석)

  • Lee, J.H.;Lee, E.W.;Lee, D.J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.325-327
    • /
    • 1998
  • Disk type single-phase switched reluctance motor which has an advantage of simple robust construction, simple control circuity, and low manufacturing cost has a specific property of axial flux machine and radial flux machine simultaneously. So, this DSPSRM has a complicated magnetic circuit and it is difficult to analyze characteristics of DSPSRM for design. In this paper, we used to analyze the effects of radial flux and axial flux simultaneously by 3D-finite element method. From the results of 3-D FEM, we obtained the approximated torque characteristics of DSPSRM. It's analysis results can be used in optimal design of DSPSRM considering the saturation.

  • PDF

Field Circuit Coupling Optimization Design of the Main Electromagnetic Parameters of Permanent Magnet Synchronous Motor

  • Zhou, Guang-Xu;Tang, Ren-Yuan;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.88-93
    • /
    • 2008
  • The electromagnetic parameters of a permanent magnet synchronous motor (PMSM) such as the open load permanent magnet flux, d axis reactance $X_d$, and q axis reactance $X_q$, are most essential to the performance analysis and optimization design of the motor. Based on the numerical analysis of the 3D electromagnetic field, the three electromagnetic parameters of permanent magnet synchronous motors with U form interior rotor structures are calculated by FEA. The rules of the leakage coefficient and reactance parameters changing with the air gap length, permanent magnet magnetism length, and isolation magnetic bridge dimensions in the rotor are given. The calculated values agree well with the measured values. The FEA results are integrated with the self compiled electromagnetic design program to optimize the prototype motor. The tested performances of the prototype motor prove that the method is suitable for the optimization of motor structure.

Design of Fault-Tolerant Inductive Position Sensor (고장 허용 유도형 위치 센서 설계)

  • Paek, Sung-Kuk;Park, Byeong-Cheol;Noh, Myoung-Gyu D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.232-239
    • /
    • 2008
  • The position sensors used in a magnetic bearing system are desirable to provide some degree of fault-tolerance as the rotor position is necessary for the feedback control to overcome the open-loop instability. In this paper, we propose an inductive position sensor that can cope with a partial fault in the sensor. The sensor has multiple poles which can be combined to sense the in-plane motion of the rotor. When a high-frequency voltage signal drives each pole of the sensor, the resulting current in the sensor coil contains information regarding the rotor position. The signal processing circuit of the sensor extracts this position information. In this paper, we used the magnetic circuit model of the sensor that shows the analytical relationship between the sensor output and the rotor motion. The multi-polar structure of the sensor makes it possible to introduce redundancy which can be exploited for fault-tolerant operation. The proposed sensor is applied to a magnetically levitated turbo-molecular vacuum pump. Experimental results validate the fault-tolerance algorithm.

Estimation of Magnetic Co-Energy in Salient Pole Rotor Type Single Phase SRM

  • Kim, Jun-Ho;Lee, Eun-Woong;Cho, Hyun-Kil;Lee, Jong-Han;Lee, Chung-Won
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.47-53
    • /
    • 2004
  • The salient pole rotor type single phase SRM (switched reluctance motor) uses radial and axial direction magnetic flux simultaneously. Therefore, the output power per unit volume is very high and the shaft length is shorter than other types of SRMs with the same output. Furthermore, it can be manufactured with low cost owing to its simple structure and driving circuit. The prototype was designed using the theory of the traditional rotating machine and 3D FEM analysis. On this paper, the experiment apparatus, which includes the fabricated prototype in previous researches, was fabricated to measure the current and voltage of the prototype. Then the flux linkage, inductance and magnetic co-energy were calculated using the experimental results. Finally, the measured magnetic co-energy was compared with the simulated magnetic co-energy.

Design of a High Power Frequency Tuneable Resonator for Wireless Power Transfer (무선 전력 전송용 고출력 주파수 가변 공진기 설계)

  • Park, Jaesu;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.352-355
    • /
    • 2013
  • In this paper, a high power tuneable resonator for a wireless power transfer system based on magnetic resonance is proposed. A spiral structure is used for a self-resonant coil and tuneable trimmer capacitors are added at the edges of resonant coils such that the frequency can be easily tuned. 3D simulation tools and equivalent circuit modeling method are used for predicting self-resonant frequency and scattering parameters according to the change of capacitor values. From the measurement of the prototype WPT system, the resonant frequency could be controlled from 3.0 MHz to 4.5 MHz and the transmission efficiency way over 50 % when the distance between transmitting coil and receiving coil was 160 mm.

A Study on Brushless Motor Design Algorithm Using Rotor Volume Ratio (회전자 체적비를 이용한 브러시레스 전동기 설계 알고리즘 연구)

  • Lee, Jeong-Jong;Ha, Jea-Pyong;Hong, Jung-Pyo;Lim, Yang-Su;Hur, Yun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.894-896
    • /
    • 2003
  • This paper present the design algorithm using torque and rotor volume(TRV). And, this paper introduce that how to applying the 3-Dimensional Equivalent Magnetic Circuit Network(3D EMCN) and brushless motor circuit simulator. This algorithm is applied the design program, the design shape is compared with existed brushless motor.

  • PDF

Effect of 3D Printed Spiral Antenna Design on Inductive Coupling Wireless Power Transmission System (3차원 프린팅을 이용한 무선전력전송의 안테나 설계 특성 규명)

  • Kim, Ji-Sung;Park, Min-Kyu;Lee, Ho;Kim, Chiyen
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.73-80
    • /
    • 2020
  • The 3D printing of electronics has been a major application topics in additive manufacturing technology for a decade. In this paper, wireless power transfer (WPT) technology for 3D electronics is studied to supply electric power to its inner circuit. The principle of WPT is that electric power is induced at the recipient antenna coil under an alternating magnetic field. Importantly, the efficiency of WPT does rely on the design of the antenna coil shape. In 3D printed electronics, a flat antenna that can be placed on the printed plane within a layer of a 3D printed part is used, but provided a different antenna response compared to that of a conventional PCB antenna for NFC. This paper investigates the WPT response characteristics of a WPT antenna for 3D printed electronics associated with changes in its design elements. The effects of changing the antenna curvature and the gap between the wires were analyzed through experimental tests.

Characteristic Analysis of Disk Type Single-phase Switched Reluctance Motor with Pole Shoe in Stator (회전자에 돌출구조를 가지는 디스크형 단상 스위치드 릴럭턴스 전동기의 특성 해석)

  • Lee, Min-Myung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.612-615
    • /
    • 2002
  • The main advantages of Disk type Single-Phase Switched Reluctance Motor (DSPSRM) is the simple construction, rugged structure, low manufacturing cost and simple driving circuit. It is especially possible to make the short axial length of DSPSRM. Therefore, it is suitable to setup this motor in a narrow space. This paper presents the shape design to maximize the average torque of DSPSRM that is achieved by 3D Finite Element Method (3D FEM) considering the nonlinear of magnetic material. The characteristics of two different rotor shapes are compared. The design parameters, such as the rotor and stator pole arc, are selected to the parametric study. The effect of pole arc ratios on the torque performance is investigated. From these results, the optimal pole arc to produce the maximum torque is determined.

1 MW class High-temperature Superconducting Motor Performance Analysis via 3-dimensional Magnetic Field Analysis (3차원 자장 해석을 통한 1 MW급 고온초전도 모터의 특성 해석)

  • Baik, S.K.;Sohn, M.H.;Lee, J.D.;Lee, E.Y.;Kwon, Y.K.;Moon, T.S.;Park, H.J.;Kim, Y.C.;Park, G.S.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.637-638
    • /
    • 2006
  • Different from the conventional motor, the superconducting motor has so large air-gap that the actual parameters such as excitation voltage have considerable difference from the values obtained from 2-dimensional electromagnetic analysis. This paper introduces 3-dimensional EMCH(Equivalent Magnetic Circuit Network) method or FLUX-3D FEM(Finite Element Method) software to reduce the error originated from the 2-dimensional electromagnetic analysis for the development of a 1 MW class high-temperature superconducting motor.

  • PDF