• Title/Summary/Keyword: 3D MOTION ANALYSIS

Search Result 743, Processing Time 0.029 seconds

Kinematic Analysis in Reaching Depending on the Localized Vibration Duration in Persons With Hemiparetic Stroke (국소 진동자극이 편마비 뇌졸중 환자의 팔 뻗기 수행에 미치는 영향에 대한 운동학적 분석)

  • Yoo, Eun-Young;Park, Ji-Hyuk;Kwon, Jae-Sung;Cho, Sang-Yoon;Lee, Bo-Mi;Kim, Yeong-Jo;Kim, Jae-Nam;Kim, Sun-Ho
    • Therapeutic Science for Rehabilitation
    • /
    • v.7 no.3
    • /
    • pp.79-88
    • /
    • 2018
  • Objective : Localized vibration has been shown to have a positive effect on recovery of upper-limb motor function in patients with hemiparetic stroke, but there has been little research on kinematic analysis for qualitative changes in movement. This study investigated kinematic changes in elbow motion during reaching after localized vibration in persons with hemiparetic stroke. Methods : This study used a one-group, cross-over trial design. Ten chronic stroke patients randomly received localized vibrations on the affected biceps brachii for 5, 10, or 20 min, at 70 Hz. Kinematic analysis of reaching was measured using a 3-D motion analysis system. Variables included peak angular velocity, time to peak angular velocity, and movement units during elbow motion. Result : Affected side elbow motion during reaching was faster, smoother, and more efficient after 20 min localized vibration. Peak angular velocity increased (p<0.05), and time to peak angular velocity (p<0.05) and the movement unit were significantly decreased (p<0.05) during elbow motion for reaching. Conclusion : Localized vibration can improve kinematic components during reaching motion in persons with hemiparetic stroke.

Human Motion Tracking based on 3D Depth Point Matching with Superellipsoid Body Model (타원체 모델과 깊이값 포인트 매칭 기법을 활용한 사람 움직임 추적 기술)

  • Kim, Nam-Gyu
    • Journal of Digital Contents Society
    • /
    • v.13 no.2
    • /
    • pp.255-262
    • /
    • 2012
  • Human motion tracking algorithm is receiving attention from many research areas, such as human computer interaction, video conference, surveillance analysis, and game or entertainment applications. Over the last decade, various tracking technologies for each application have been demonstrated and refined among them such of real time computer vision and image processing, advanced man-machine interface, and so on. In this paper, we introduce cost-effective and real-time human motion tracking algorithms based on depth image 3D point matching with a given superellipsoid body representation. The body representative model is made by using parametric volume modeling method based on superellipsoid and consists of 18 articulated joints. For more accurate estimation, we exploit initial inverse kinematic solution with classified body parts' information, and then, the initial pose is modified to more accurate pose by using 3D point matching algorithm.

3D Feature Based Tracking using SVM

  • Kim, Se-Hoon;Choi, Seung-Joon;Kim, Sung-Jin;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1458-1463
    • /
    • 2004
  • Tracking is one of the most important pre-required task for many application such as human-computer interaction through gesture and face recognition, motion analysis, visual servoing, augment reality, industrial assembly and robot obstacle avoidance. Recently, 3D information of object is required in realtime for many aforementioned applications. 3D tracking is difficult problem to solve because during the image formation process of the camera, explicit 3D information about objects in the scene is lost. Recently, many vision system use stereo camera especially for 3D tracking. The 3D feature based tracking(3DFBT) which is on of the 3D tracking system using stereo vision have many advantage compare to other tracking methods. If we assumed the correspondence problem which is one of the subproblem of 3DFBT is solved, the accuracy of tracking depends on the accuracy of camera calibration. However, The existing calibration method based on accurate camera model so that modelling error and weakness to lens distortion are embedded. Therefore, this thesis proposes 3D feature based tracking method using SVM which is used to solve reconstruction problem.

  • PDF

Effect of Tiger Step on Lower Extremities during Uphill Walking (오르막보행 시 타이거스텝 하지 움직임에 미치는 영향)

  • Kang, Jihyuk;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.17-23
    • /
    • 2022
  • Objective: The aim of this study was to investigate the effect Tiger-step walking on the movement of the lower extremities during walking. Method: Twenty healthy male adults who had no experience of musculoskeletal injuries on lower extremities in the last six months (age: 26.85 ± 3.28 yrs, height: 174.6 ± 3.72 cm, weight: 73.65 ± 7.48 kg) participated in this study. In this study, 7-segments whole-body model (pelvis, both side of thigh, shank and foot) was used and 29 reflective markers and cluster were attached to the body to identify the segments during the gait. A 3-dimensional motion analysis with 8 infrared cameras and 7 channeled EMG was performed to find the effect of tigerstep on uphill walking. To verify the tigerstep effect, a one-way ANOVA with a repeated measure was used and the statistical significance level was set at α=.05. Results: Firstly, Both Tiger-steps showed a significant increase in stance time and stride length compared with normal walking (p<.05), while both Tiger-steps shown significantly reduced cadence compared to normal walking (p<.05). Secondly, both Tiger-steps revealed significantly increased in hip and ankle joint range of motion compared with normal walking at all planes (p<.05). On the other hand, both Tiger-steps showed significantly increased knee joint range of motion compared with normal walking at the frontal and transverse planes (p<.05). Lastly, Gluteus maximus, biceps femoris, medial gastrocnemius, tibialis anterior of both tiger-step revealed significantly increased muscle activation compared with normal walking in gait cycle and stance phase (p<.05). On the other hand, in swing phase, the muscle activity of the vastus medialis, biceps femoris, tibialis anterior of both tiger-step significantly increased compared with those of normal walking (p <.05). Conclusion: As a result of this study, Tiger step revealed increased in 3d range of motion of lower extremity joints as well as the muscle activities associated with range of motion. These findings were evaluated as an increase in stride length, which is essential for efficient walking. Therefore, the finding of this study prove the effectiveness of the tiger step when walking uphill, and it is thought that it will help develop a more efficient tiger step in the future, which has not been scientifically proven.

Motion Analysis of Conventional Rotary Blades (기존 트랙터 로터리날의 운동분석)

  • Lee, Hyun-Dong;Kim, Ki-Dae;Kim, Chan-Soo;Kim, Sung-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.31 no.1
    • /
    • pp.26-34
    • /
    • 2004
  • In this study, motion characteristics and power requirement of rotary tilling according to shape of conventional rotary blade were measured. This study was performed to establish factors which needed to develop energy saving rotary blade. Starting point of edged curve of imported rotary blade was faster than that of domestic rotary blade after measuring and analyzing edged curve of rotary blade. So domestic rotary blade tills much soil than imported rotary blade. In analyzing motion of rotary blade, Rotary blade of A, D type was begun to contact at part 3. Analyzing back surface of rotary blade which contact to soil at critical $\lambda$ results in contacting at e-f part. In measuring power requirement of rotary blade, specific torque and specific work of rotary blade are $160{\sim}170kgf{\cdot}m/m^2$, $3,700kgf{\cdot}m/m^3$. It shows power requirement of rotary blade according to shape of rotary blade are very different.

  • PDF

Characteristics of ROM and EMG to Balance Training in Unstable Plate System: Primary Study (균형 훈련 플레이트 시스템을 이용한 생체역학적 특성 연구)

  • Jun, SungChul;Lim, HeeChul;Lee, ChangHyung;Kim, TaeHo;Jung, DukYoung;Chun, KeyoungJin
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.235-239
    • /
    • 2015
  • The purpose of this study was to investigate the unstable plate system for the advanced balance ability. 7 male volunteers (age $33.7{\pm}1.2$ years, height $174.7{\pm}3.8cm$, weight $86.0{\pm}3.6kg$, BMI $28.2{\pm}2.0kg/m^2$) performed the partial squat motion on the shape of CAP type(${\cap}$) and BOWL type(${\cup}$) plate system. The range of motion (ROM) and muscle activation were acquired by the motion analysis system and the EMG system. Results of ROMs of the CAP type plate system were shown the widely range of the deviation in the ankle joint on the sagittal plane (sagittal plane - hip joint $10.7^{\circ}$ > $5.4^{\circ}$, knee joint $16.3^{\circ}$ > $6.4^{\circ}$, ankle joint $18.8^{\circ}$ > $6.3^{\circ}$ ; transverse plane - hip joint $3.5^{\circ}$ > $1.8^{\circ}$, knee joint $5.3^{\circ}$ > $3.4^{\circ}$, ankle joint $11.3^{\circ}$ > $5.3^{\circ}$ ; frontal plane - hip joint $0.9^{\circ}$ > $0.5^{\circ}$, knee joint $0.8^{\circ}$ > $0.6^{\circ}$, ankle joint $4.8^{\circ}$ > $3.7^{\circ}$). Muscle activation results of the CAP type plate system were indicated higher in major muscles for balance performance than the BOWL type plate system (vastus lateralis 0.90 > 0.62, peroneus longus 0.49 > 0.21, biceps femoris 0.38 > 0.14, gastrocnemius 0.11 > 0.05). These findings may indicate that the CAP type plate system would expect better effectiveness in perform the balance training. This paper is primary study for developing balance skills enhancement training device.

Improvement of the Stratospheric Wind Analysis with the Climatological Constraint in the Global Three-Dimensional Variational Assimilation at Korea Meteorological Administration (3차원 변분법의 제한조건 적용을 통한 기상청 전지구 모델의 성층권 바람장 개선)

  • Joo, Sangwon;Lee, Woo-Jin
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 2007
  • A constraint based on climatology is introduced to the cost function of the three-dimensional variational assimilation (3dVar) to correct the error of the zonal mean wind structure in the global data assimilation system at Korea Meteorological Administration (KMA). The revised cost function compels the analysis fit to the chosen climatology while keeping the balance between the variables in the course of analysis. The constraint varies selectively with the vertical level and the horizontal scale of the motion. The zonally averaged wind field from European Centre for Medium-Range Weather Forecasts Re-Analysis 40 (ERA-40) is used as a climatology field in the constraint. The constraint controls only the zonally averaged stratospheric long waves with total wave number less than 20 to fix the error of the large scale wind field in the stratosphere. The constrained 3dVar successfully suppresses the erroneous westerly in the stratospheric analysis promptly, and has been applied on the operational global 3dVar system at KMA.

Evaluation of Ergonomic Performance of Medical Smart Insoles

  • Yi, Jae-Hoon;Lee, Jin-Wook;Seo, Dong-Kwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.215-223
    • /
    • 2022
  • Objective: This study was to resolve the limitations of the experimental environment and to solve the shortcomings of the method of measuring human gait characteristics using optical measuring instruments. Design: A cross-sectional study. Methods: Fifteen healthy adults without a history of orthopedic surgery on the lower extremities for the past 6 months were participated. They were analyzed gait variables using the smart guide and the 3D image analysis at the same time, and their results were compared. Visual-3D was used to calculate the analysis variables. Results: The reliability and validity of the data according to the two measuring instruments were found to be very high; gait speed(0.85), cycle time(0.99), stride time of both feet(0.98, 0.97) stride legnth of both feet(0.86, 0.88) stride per minute of both feet(0.99, 0.96), foot speed of both feet(0.90, 0.91), step time of both feet(0.77, 0.71), step per minute(0.72, 0.74), stance time of both feet(0.96, 0.97), swing time of both feet(0.93, 0.79), double step time(0.81), initial double step time(0.84) and terminal step time(0.76). Conclusions: In the case of the smart insole, which measures human gait variables using the pressure sensor and inertial sensor inserted in the insole, the reliability and validity of the measured data were found to be very high. It can be used as a device to replace 3D image analysis when measuring pathological gait.

Analysis of Face Direction and Hand Gestures for Recognition of Human Motion (인간의 행동 인식을 위한 얼굴 방향과 손 동작 해석)

  • Kim, Seong-Eun;Jo, Gang-Hyeon;Jeon, Hui-Seong;Choe, Won-Ho;Park, Gyeong-Seop
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.4
    • /
    • pp.309-318
    • /
    • 2001
  • In this paper, we describe methods that analyze a human gesture. A human interface(HI) system for analyzing gesture extracts the head and hand regions after taking image sequence of and operators continuous behavior using CCD cameras. As gestures are accomplished with operators head and hands motion, we extract the head and hand regions to analyze gestures and calculate geometrical information of extracted skin regions. The analysis of head motion is possible by obtaining the face direction. We assume that head is ellipsoid with 3D coordinates to locate the face features likes eyes, nose and mouth on its surface. If was know the center of feature points, the angle of the center in the ellipsoid is the direction of the face. The hand region obtained from preprocessing is able to include hands as well as arms. For extracting only the hand region from preprocessing, we should find the wrist line to divide the hand and arm regions. After distinguishing the hand region by the wrist line, we model the hand region as an ellipse for the analysis of hand data. Also, the finger part is represented as a long and narrow shape. We extract hand information such as size, position, and shape.

  • PDF