• Title/Summary/Keyword: 3D LiDAR

Search Result 284, Processing Time 0.037 seconds

A Patient Movement Monitoring Method Using 2D Lidar (2D Lidar를 이용한 환자행동 모니터링 방법)

  • Yun-Kyoo Ryoo
    • Journal of the Health Care and Life Science
    • /
    • v.9 no.2
    • /
    • pp.297-302
    • /
    • 2021
  • As the price of LiDAR developed for autonomous driving has dropped dramatically, LiDAR has begun to be applied in various fields. Typical examples are vacuum cleaner robots, autonomous delivery robots, and autonomous obstacle avoidance drones. LiDAR is becoming the only means of figuring out the location of an object in real time while compensating for the weakness that 2D or 3D cameras are vulnerable to lighting. In this paper, we propose a method to monitor the movement of a patient by installing a 2D lidar in a hospital room. When a patient who needs intensive monitoring due to psychologically unstable, suicidal intention, or psychotic findings is alone in the ward, 2D LiDAR monitors the patient's movement and sends an appropriate alarm to the management room to effectively monitor the patient. devised a way to do it.

3D Building Modeling Using Aerial LiDAR Data (항공 LiDAR 데이터를 이용한 3차원 건물모델링)

  • Cho, Hong-Beom;Cho, Woo-Sug;Park, Jun-Ku;Song, Nak-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.141-152
    • /
    • 2008
  • The 3D building modeling is one of crucial components in constructing 3D geospatial information. The existing methods for 3D building modeling depend mainly on manual photogrammetric processes, which indeed take great amount of time and efforts. In recent years, many researches on 3D building modeling using aerial LiDAR data have been actively performed to aim at overcoming the limitations of existing 3D building modeling methods. Either techniques with interpolated grid data or data fusion with digital map and images have been investigated in most of existing researches on 3D building modeling with aerial LiDAR data. The paper proposed a method of 3D building modeling with LiDAR data only. Firstly, octree-based segmentation is applied recursively to LiDAR data classified as buildings in 3D space until there are no more LiDAR points to be segmented. Once octree-based segmentation is completed, each segmented patch is thereafter merged together based on its geometric spatial characteristics. Secondly, building model components are created with merged patches. Finally, a 3D building model is generated and composed with building model components. The experimental results with real LiDAR data showed that the proposed method was capable of modeling various types of 3D buildings.

2D LiDAR based 3D Pothole Detection System (2차원 라이다 기반 3차원 포트홀 검출 시스템)

  • Kim, Jeong-joo;Kang, Byung-ho;Choi, Su-il
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.989-994
    • /
    • 2017
  • In this paper, we propose a pothole detection system using 2D LiDAR and a pothole detection algorithm. Conventional pothole detection methods can be divided into vibration-based method, 3D reconstruction method, and vision-based method. Proposed pothole detection system uses two inexpensive 2D LiDARs and improves pothole detection performance. Pothole detection algorithm is divided into preprocessing for noise reduction, clustering and line extraction for visualization, and gradient function for pothole decision. By using gradient of distance data function, we check the existence of a pothole and measure the depth and width of the pothole. The pothole detection system is developed using two LiDARs, and the 3D pothole detection performance is shown by detecting a pothole with moving LiDAR system.

The Segmentation and the Extraction of Precise Plane Equation of Building Roof Plane using 3D Hough Transformation of LiDAR Data (LiDAR 데이터의 3D Hough 변환을 이용한 건물 지붕 평면의 세그멘테이션 및 정밀 평면방정식 추출)

  • Lee, Young-Jin;Oh, Jae-Hong;Shin, Sung-Woong;Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.505-512
    • /
    • 2008
  • The 3D Hough transformation is the one of the most powerful and popular algorithm for extracting plane parameters from LiDAR data. However, there are some problems when extracting building roof plane using 3D Hough transformation. This paper explains possible problems and solution for extracting roof plane. The algorithm defines peak plane, exact plane, and LESS plane for extracting accurate plane parameters in the accumulator of the 3D Hough transformation. The peak plane is the plane which is represented by peak in the accumulator. The exact plane is the plane which is represented by the accumulator cell which is closest to the actual plane. The LESS plane can be calculated from all LiDAR points in the exact plane by using least-square adjustment. Test results show that proposed algorithm can extracts building roof plane very accurately.

3D RECONSTRUCTION OF LANDSCAPE FEATURES USING LiDAR DATAAND DIGITAL AERIAL PHOTOGRAPH FOR 3D BASED VISIBILITY ANALYSIS

  • Song, Chul-Chul;Lee, Woo-Kyun;Jeong, Hoe-Seong;Lee, Kwan-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.548-551
    • /
    • 2007
  • Among components of digital topographic maps used officially in Korea, only contours have 3D values except buildings and trees that are demanded in landscape planning. This study presented a series of processes for 3Dreconstructing landscape features such as terrain, buildings and standing trees using LiDAR (Light Detection And Ranging) data and aerial digital photo graphs. The 3D reconstructing processes contain 1) building terrain model, 2) delineating outline of landscape features, 3) extracting height values, and 4) shaping and coloring landscape features using aerial photograph and 3-D virtual data base. LiDAR data and aerial photograph was taken in November 2006 for $50km^{2}$ area in Sorak National Park located in eastern part of Korea. The average scanning density of LiDAR pulse was 1.32 points per square meter, and the aerial photograph with RGB bands has $0.35m{\times}0.35m$ spatial resolution. Using reconstructed 3D landscape features, visibility with the growing trees with time and at different viewpoints was analyzed. Visible area from viewpoint could be effectively estimated considering 3D information of landscape features. This process could be applied for landscape planning like building scale with the consideration of surrounding landscape features.

  • PDF

A Pilot Site Planning and Design based on 3D Spatial Information (단지설계업무에서 3차원 공간자료의 활용)

  • Hwang, Chul-Sue;Lee, Sang-Hun
    • Land and Housing Review
    • /
    • v.3 no.1
    • /
    • pp.15-22
    • /
    • 2012
  • The purpose of this research was to propose housing estate planning that applies 3D spatial information to DAS housing estate planning program and to enhance applicability of 3D spatial analysis. In addition, this research evaluated the applicability of 3D spatial information to site planning of Korea Land and Housing Corporation and developed models for the purpose of applying the spatial information efficiently. Moreover, we tested applicability of LiDAR that can allow 3D spatial information to be more efficient and accurate. The results from cross section analysis implies that LiDAR has higher usability than existing geographic information. Additionally, this study shaded light on the suggested system development model that can simulate location or height of an apartment house by spatially analyzing difference between before-and-after site development.

Mapping 3D Shorelines Using KOMPSAT-2 Imagery and Airborne LiDAR Data (KOMPSAT-2 영상과 항공 LiDAR 자료를 이용한 3차원 해안선 매핑)

  • Choung, Yun Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • A shoreline mapping is essential for describing coastal areas, estimating coastal erosions and managing coastal properties. This study has planned to map the 3D shorelines with the airborne LiDAR(Light Detection and Ranging) data and the KOMPSAT-2 imagery, acquired in Uljin, Korea. Following to the study, the DSM(Digital Surface Model) is generated firstly with the given LiDAR data, while the NDWI(Normalized Difference Water Index) imagery is generated by the given KOMPSAT-2 imagery. The classification method is employed to generate water and land clusters from the NDWI imagery, as the 2D shorelines are selected from the boundaries between the two clusters. Lastly, the 3D shorelines are constructed by adding the elevation information obtained from the DSM into the generated 2D shorelines. As a result, the constructed 3D shorelines have had 0.90m horizontal accuracy and 0.10m vertical accuracy. This statistical results could be concluded in that the generated 3D shorelines shows the relatively high accuracy on classified water and land surfaces, but relatively low accuracies on unclassified water and land surfaces.

Analysis of Economical Efficiency of Digital Map in Production Cost by Aerial LiDAR Surveying (항공 LiDAR 측량에 의한 수치지도 제작의 경제성 분석)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Lee, Jin-Duk;Park, Joon-Kyu
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.1 s.39
    • /
    • pp.67-73
    • /
    • 2007
  • Recently, three-dimensional (3D) GI (Geospatial Information) using LiDAR system has been used various fields such as the production of digital map, the modeling of 3D building and urban area, and analysis of communication network and environmental effect. In this study, the production cost of digital map by aerial LiDAR surveying were compared with the cost by aerial photograph surveying for analysis of economical efficiency. It is expected that the results of this study will be used base data for production, update, revision of digital map and curtail effect of national budget.

  • PDF

LiDAR Data Segmentation Using Aerial Images for Building Modeling (항공영상에 의한 LiDAR 데이터 분할에 기반한 건물 모델링)

  • Lee, Jin-Hyung;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.47-56
    • /
    • 2010
  • The use of airborne LiDAR data obtained by airborne laser scanners has increased in the field of spatial information such as building modeling. LiDAR data consist of irregularly distributed 3D coordinates and lack visual and semantic information. Therefore, LiDAR data processing is complicate. This study suggested a method of LiDAR data segmentation using roof surface patches from aerial images. Each segmented patch was modeled by analyzing geometric characteristics of the LiDAR data. The optimal functions could be determined with segmented data that fits various shapes of the roof surfaces as flat and slanted planes, dome and arch types. However, satisfiable segmentation results were not obtained occasionally due to shadow and tonal variation on the images. Therefore, methods to remove unnecessary edges result in incorrect segmentation are required.

Large-area High-speed Single Photodetector Based on the Static Unitary Detector Technique for High-performance Wide-field-of-view 3D Scanning LiDAR (고성능 광각 3차원 스캐닝 라이다를 위한 스터드 기술 기반의 대면적 고속 단일 광 검출기)

  • Munhyun Han;Bongki Mheen
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.4
    • /
    • pp.139-150
    • /
    • 2023
  • Despite various light detection and ranging (LiDAR) architectures, it is very difficult to achieve long-range detection and high resolution in both vertical and horizontal directions with a wide field of view (FOV). The scanning architecture is advantageous for high-performance LiDAR that can attain long-range detection and high resolution for vertical and horizontal directions. However, a large-area photodetector (PD), which is disadvantageous for detection speed, is essentially required to secure the wide FOV. Thus we propose a PD based on the static unitary detector (STUD) technique that can operate multiple small-area PDs as a single large-area PD at a high speed. The InP/InGaAs STUD PIN-PD proposed in this paper is fabricated in various types, ranging from 1,256 ㎛×949 ㎛ using 32 small-area PDs of 1,256 ㎛×19 ㎛. In addition, we measure and analyze the noise and signal characteristics of the LiDAR receiving board, as well as the performance and sensitivity of various types of STUD PDs. Finally, the LiDAR receiving board utilizing the STUD PD is applied to a 3D scanning LiDAR prototype that uses a 1.5-㎛ master oscillator power amplifier laser. This LiDAR precisely detects long-range objects over 50 m away, and acquires high-resolution 3D images of 320 pixels×240 pixels with a diagonal FOV of 32.6 degrees simultaneously.