• Title/Summary/Keyword: 3D Laser Scanner

Search Result 279, Processing Time 0.034 seconds

Direct UV laser projection ablation to engrave 6㎛-wide patterns in a buildup film (빌드업 필름의 선폭 6㎛급 패턴 가공을 위한 직접식 UV 레이저 프로젝션 애블레이션)

  • Sohn, Hyonkee;Park, Jong-Sig;Jeong, Jeong-Su;Shin, Dong-Sig;Choi, Jiyeon
    • Laser Solutions
    • /
    • v.17 no.3
    • /
    • pp.19-23
    • /
    • 2014
  • To directly engrave circuit-line patterns as wide as $6{\mu}m$ in a buildup film to be used as an IC substrate, we applied a projection ablation technique in which an 8 inch dielectric ($ZrO_2/SiO_2$) mask, a DPSS 355nm laser instead of an excimer laser, a ${\pi}$-shaper and a galvo scanner are used. With the ${\pi}$-shaper and a square aperture, the Gaussian beam from the laser is shaped into a square flap-top beam. The galvo scanner before the $f-{\theta}$ lens moves the flat-top beam ($115{\mu}m{\times}105{\mu}m$) across the 8 inch dielectric mask whose patterned area is $120mm{\times}120mm$. Based on the results of the previous research by the authors, the projection ratio was set at 3:1. Experiments showed that the average width and depth of the engraved patterns are $5.41{\mu}m$ and $7.30{\mu}m$, respectively.

  • PDF

The design of 4S-Van for implementation of ground-laser mapping system (지상 레이져 매핑시스템 구현을 위한 4S-Van 시스템 설계)

  • 김성백;이승용;김민수
    • Spatial Information Research
    • /
    • v.10 no.3
    • /
    • pp.407-419
    • /
    • 2002
  • In this study, the design of 4S-Van system is discussed fur the implementation of laser mapping system. Laser device is fast and accurate sensor that acquires 3D road and surface data. The orientation laser sensor is determined by loosely coupled (D)GPS/INS Integration. Considering current system architecture, (D)GPS/INS integration is performed far performance analysis of direct georeferencing and self-calibration is performed for interior and exterior orientation and displacement. We utilized 3 laser sensors for compensation and performance improvement. 3D surface data from laser scanner and texture image from CCD camera can be used to implement 3D visualization.

  • PDF

Industrial analysis according to lithography characteristics of digital micromirror device and polygon scanner (Digital Micromirror Device와 Polygon scanner의 Lithography 특성에 따른 산업적 분석)

  • Kim, Ji-Hun;Park, Kyu-Bag;Park, Jung-Rae;Ko, Kang-Ho;Lee, Jeong-woo;Lim, Dong-Wook
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.65-71
    • /
    • 2021
  • In the early days of laser invention, it was simply used as a measuring tool, but as lasers became more common, they became an indispensable processing tool in the industry. Short-wavelength lasers are used to make patterns on wafers used in semiconductors depending on the wavelength, such as CO2 laser, YAG laser, green laser, and UV laser. At first, the hole of the PCB board mainly used for electronic parts was not thin and the hole size was large, so a mechanical drill was used. However, in order to realize product miniaturization and high integration, small hole processing lasers have become essential, and pattern exposure for small hole sizes has become essential. This paper intends to analyze the characteristics through patterns by exposing the PCB substrate through DMD and polygon scanner, which are different optical systems. Since the optical systems are different, the size of the patterns was made the same, and exposure was performed under the optimal conditions for each system. Pattern characteristics were analyzed through a 3D profiler. As a result of the analysis, there was no significant difference in line width between the two systems. However, it was confirmed that dmd had better pattern precision and polygon scanner had better productivity.

Scanning Stereoscopic PIV for 3D Vorticity Measurement

  • SAKAKIBARA Jun;HORI Toshio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.1-13
    • /
    • 2004
  • A scanning stereo-PIV system was developed to measure the three-dimensional distribution of three-component velocity in a turbulent round jet. A laser light beam produced by a high repetition rate YLF pulse laser was expanded vertically by a cylindrical lens to form a laser light sheet. The light sheet is scanned in a direction normal to the sheet by a flat mirror mounted on an optical scanner, which is controlled by a programmable scanner controller. Two high-speed mega-pixel resolution C-MOS cameras captured the particle images illuminated by the light sheet, and stereoscopic PIV method was adopted to acquire the 3D-3C-velocity distribution of turbulent round jet in an octagonal tank filled with water. The jet Reynolds number was set at Re=1000 and the streamwise location of the measurement was fixed at approximately x = 40D. Time evolution of three-dimensional vortical structure, which is identified by vorticity, is visualized. It revealed that the existence of a group of hairpin-like vortex structures was quite evident around the rim of the shear layer of the jet. Turbulence statistics shows good agreement with the previous data, and divergence of a filtered (unfiltered) velocity vector field was $7\%\;(22\%)$ of root-me an-squared vorticity value.

  • PDF

Construction of Mine Geospatial Information by Total Station and 3D Laser Scanner (토털스테이션과 3D 레이저 스캐너에 의한 광산공간정보 구축)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.520-525
    • /
    • 2019
  • Mines are an important infrastructure for securing resources, but safety problems can arise in the course of operation. Recently, the mining process is very complicated due to the large scale and mechanization. Therefore, it is necessary to construct accurate geospatial information on mine for systematic and safe mine operation. The geospatial information construction using the existing total station has a disadvantage that a lot of work time is required because the target must be collimated and measured. In this study, the data of the mines were acquired with the total station and the 3D laser scanner, and the mine spatial information was constructed by using the shape based registration method. By using the static scanner data of some area applying the reference point surveying result of the total station, it was possible to construct the accurate result on the wide area acquired by the mobile scanner effectively. Also, the accuracy of the constructed geospatial information was evaluated and the deviation of mean 0.083m was shown. Point cloud products constructed through the research can contribute to the efficiency improvement of mine management by enabling quantitative analysis such as visualization of mine shape, distance, area and slope, and automation of drawing creation for cross section shape.

Measurement of minimum line width of an object fabricated by metal 3D printer using powder bed fusion type with stainless steal powder (스테인리스강을 사용한 분말 적층 용융 방식의 금속 3차원 프린터에서 제작된 물체의 최소 선폭 측정)

  • Son, BongKuk;Jeong, Youn Hong;Jo, Jae Heung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.346-351
    • /
    • 2018
  • Metal three-dimensional (3D) printing technologies are mainly classified as powder bed fusion (PBF) and direct energy deposition (DED) methods according to the method of application of a laser beam to metallic powder. The DED method can be used to fabricate fine and hard 3D metallic structures by applying a strong laser beam to a thin layer of metallic powder. The PBF method involves slicing 3D graphics to be a certain height, laminating metal powders, and making a 3D structure using a laser. While the DED method has advantages such as laser cladding and metallic welding, it causes problems with low density when 3D shapes are created. The PBF method was introduced to address the structural density issues in the DED method and makes it easier to produce relatively dense 3D structures. In this paper, thin lines were produced by using PBF 3D printers with stainless-steel powder of roughly $30{\mu}m$ in diameter with a galvano scanner and fiber-transferred Nd:YAG laser beam. Experiments were carried out to find the optimal conditions for the width of a line depending on the processing times, laser power, spot size, and scan speed. The optimal conditions were two scanning processes in one line structure with a laser power of 30 W, spot size of $28.7{\mu}m$, and scan speed of 200 mm/s. With these conditions, a minimum width of about $85.3{\mu}m$ was obtained.

A Study on Optimal Laser Scanning method for Reverse Engineering at Interior Remodeling Project (리모델링 프로젝트의 역설계 적용을 위한 최적 3차원 레이저 스캐닝 정보 획득 방안에 관한 연구 - 실내 리모델링을 대상으로 -)

  • Lee, Sangseol;Kwon, Soonwook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.3-11
    • /
    • 2014
  • Recently, remodeling construction project has been prevalently conducted in major city areas in Korea. However, remodeling construction project has a difficulty in conducting a construction because of non-existing drawing or lack of drawing information. To solve these problems, modeling techniques by using reverse engineering have been widely studied in other industries such as aerospace and automobile industry. But reverse engineering techniques have not been used in remodeling construction projects because those technology haven't supplied less accuracy during required time for surveying. So, this study suggests optimal method of acquiring accurate 3D laser scanner information for reverse engineering at interior remodeling project.

A Study on Assessment of Advance and Overbreak in Underground Excavation Utilizing 3D Scanner (3D 스캐너를 이용한 지하공동의 굴진장 및 여굴 평가 기초연구)

  • Noh, You-Song;Kim, Jung-Kyu;Ko, Young-Hun;Kim, Seong-Jun;Chung, So-Keul;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.33 no.4
    • /
    • pp.1-6
    • /
    • 2015
  • Abstract This study is to efficiently calculate and evaluate the elements of advance, overbreak and underbreak on the mine under the production using the 3D laser scanner. For this purpose, a 3D laser scanner was sued to acquire the point-cloud which records the space coordinates and modelling of the underground tunnel using the 3D modeling program. When each element was observed through the study result, the advance on the center cut was 2.6m in average while the total advance was 2.4m. If the drilling length of 3.8m is based, the advance rate was evaluated to be 67% in average in the center cut section with the total average of 64%. In addition, when the volume of overbreak was measured based on the design cross section, the average overbreak volume was found to be $4.5m^3$ on left wall, $4.5m^3$ on right wall, and $5m^3$ on roof with the total volume of $14m^3$. When the overbreak volume is measured based on the look-out cross section, it was $3m^3$ on roof with the total volume of $8.4m^3$. The rate of overbreak volume against the average excavation volume was 8% based on the design cross section and 5% based on the look-out cross section.

Application of Scanning Total Station for Efficiency Enhancement of Tunnel Surveys (터널측량의 효율성 향상을 위한 스캐닝 토털스테이션의 활용)

  • Park, Joon-Kyu;Kim, Min-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.242-247
    • /
    • 2017
  • Over- and under-excavation are factors that increase construction cost of tunnels, which makes management essential. Total stations have been used for tunnel surveying because GNSS is difficult to use in tunnels. However, it takes much time to acquire data using total stations. In this study, a total station was integrated with a 3D laser scanner and used for tunnel surveying in Namyangju-si, Gyeonggi-do. The scanning total station reduced the work time compared to the conventional method. Furthermore, reports were effectively generated for overbreak and underbreak for each section and compared with the design. In addition, we could analyze both the cross section and scanned area effectively by using the scanning data. This method can improve the efficiency of tunnel surveying work by combining the advantages of a conventional total station and a 3D laser scanner.