• Title/Summary/Keyword: 3D Isotropic Bulk

Search Result 3, Processing Time 0.018 seconds

Design and Analysis of 3D Isotropic Metamaterial Bulk Structure Using Thin Wire and SRR (Thin Wire와 SRR을 이용한 3D 등방성 Metamaterial Bulk 구조 설계 및 분석)

  • Kim, Chung-Ju;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.919-925
    • /
    • 2011
  • In this paper, we designed and analyzed a 3D isotropic bulk structure consisting of thin wires and SRR's(Split Ring Resonator) with which the permittivity and permeability can be controlled at the same time. For the 3D isotropic bulk structure, first of all, the geometry seen by three main axes must look alike. Thus, we adopted the orthogonal thin wires and symmetrical SRR's. As a result, we constructed metamaterial bulk structures of which effective relative permittivity and permiability are about -0.6 and -1.5, respectively. Its refractive index is about -0.95 in each direction(x, y and z direction). The computed Brillouin dispersion diagram also showed that the proposed structure is almost near isotropic.

Ultrasonic Estimation and FE Analysis of Elastic Modulus of Kelvin Foam

  • Kim, Nohyu;Yang, Seungyong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

Characterization of Elastic Modulus of Kelvin Foam Using Elastic Structural Model and Ultrasound (초음파와 탄성 구조 모델을 이용한 캘빈 폼 재료의 탄성계수 평가)

  • Kim, Woochan Ethan;Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.474-482
    • /
    • 2016
  • A Kelvin foam plate - widely used in the energy and transport industries as a lightweight structural material - was examined to estimate its Young's modulus using ultrasound. An isotropic tetrakaidecahedron foam structure was designed in SolidWorks and printed using 3D printer with an ABS plastic material. The 3D printed foam structure was used to build a foam plate with a 14 mm thickness ($50mm{\times}100mm$ in size) for the ultrasonic test. The Kelvin foam plate, a significantly porous medium, was completely filled with paraffin wax to enable the ultrasound to penetrate through the porous medium. The acoustic wave velocity of the wax-filled Kelvin foam was measured using the time of flight (TOF) method. Furthermore, the elastic modulus of the Kelvin foam was estimated based on an elastic structural model developed in this study. The Young's modulus of the produced Kelvin foam was observed to be approximately 3.4% of the bulk value of the constituent material (ABS plastic). This finding is consistent with experimental and theoretical results reported by previous studies.