• Title/Summary/Keyword: 3D Image Scan

Search Result 233, Processing Time 0.03 seconds

A Study on the Improvement of Digital Periapical Images using Image Interpolation Methods (영상보간법을 이용한 디지털 치근단 방사선영상의 개선에 관한 연구)

  • Song Nam-Kyu;Koh Kawng-Joon
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.2
    • /
    • pp.387-413
    • /
    • 1998
  • Image resampling is of particular interest in digital radiology. When resampling an image to a new set of coordinate, there appears blocking artifacts and image changes. To enhance image quality, interpolation algorithms have been used. Resampling is used to increase the number of points in an image to improve its appearance for display. The process of interpolation is fitting a continuous function to the discrete points in the digital image. The purpose of this study was to determine the effects of the seven interpolation functions when image resampling in digital periapical images. The images were obtained by Digora, CDR and scanning of Ektaspeed plus periapical radiograms on the dry skull and human subject. The subjects were exposed to intraoral X-ray machine at 60kVp and 70 kVp with exposure time varying between 0.01 and 0.50 second. To determine which interpolation method would provide the better image, seven functions were compared; (1) nearest neighbor (2) linear (3) non-linear (4) facet model (5) cubic convolution (6) cubic spline (7) gray segment expansion. And resampled images were compared in terms of SNR(Signal to Noise Ratio) and MTF(Modulation Transfer Function) coefficient value. The obtained results were as follows ; 1. The highest SNR value(75.96dB) was obtained with cubic convolution method and the lowest SNR value(72.44dB) was obtained with facet model method among seven interpolation methods. 2. There were significant differences of SNR values among CDR, Digora and film scan(P<0.05). 3. There were significant differences of SNR values between 60kVp and 70kVp in seven interpolation methods. There were significant differences of SNR values between facet model method and those of the other methods at 60kVp(P<0.05), but there were not significant differences of SNR values among seven interpolation methods at 70kVp(P>0.05). 4. There were significant differences of MTF coefficient values between linear interpolation method and the other six interpolation methods (P< 0.05). 5. The speed of computation time was the fastest with nearest -neighbor method and the slowest with non-linear method. 6. The better image was obtained with cubic convolution, cubic spline and gray segment method in ROC analysis. 7. The better sharpness of edge was obtained with gray segment expansion method among seven interpolation methods.

  • PDF

Evaluation of the usefulness of the method according to changes in patient breathing during chest 4D CT imaging (흉부 4D CT에서 호흡 변화에 대한 일시 중지 및 재개 방법의 유용성 평가)

  • Heo, Sol;Shin, Chung Hun;Jeong, Hyun Sook;Yoo, Soon Mi;Kim, Jeong Mi;Yun, In Ha;Hong, Seung Mo;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.47-54
    • /
    • 2021
  • Purpose : In order to evaluate the usefulness of clinical application of the Pause & Resume methods by comparing and analyzing the data stability and dose reduction effect when repeat scan assuming irregular breathing and using the Pause & Resume method during chest 4D CT using QuasarTM Phantom. Materials and Methods : Using the QuasarTM Phantom, set the breathing rate per minute to 15 BPM and 7.5 BPM, and set the S15 point as an irregular breathing section, and then placed OSLD to this point and use the Pause & Resume method to measure the dose of S15. CTDIvol, DLP, and ALARA-CT were used for comparative analysis of radiation dose between Pause & Resume method and Repeat-scan. In order to evaluate the stability and usability of the data applying the Pause & Resume method, the captured images were sorted by Advanced Workstation Volume Share7 and then sent to EclipseTM, the diameter and volume were analyzed by forming a contour on the iron ball in the QuasarTM Phantom Results : When using Pause & Resume, the dose of OSLD measurement increased by 1.97 times in the section of S15. As a result of image evaluation, the average value of all volumes measured with and without the Pause & Resume method at 15 BPM and 7.5 BPM was 15.2 cm3±0.5%.Allthemeasuredvaluesfor the radius of iron ball were 3.1 cm regardless of whether Pause & Resume method was used or not. In the case of using Pause & Resume, 33% decreased from the lowest DLP value and 38% decreased from the highest DLP value of repeat scan, and the effective dose also decreased 32.1% from the minimum value and 37.6% from the maximum value. Conclusion: Irradiation dose was increased by Pause & Resume method because of the repeat scan on the S15 site where assuming irregular breathing occurred, However Pause & Resume method led to a significant reduction in dose on overall scan range. It also proved the usefulness of clinical application of the Pause & Resume method as a result of similar diameters and volumes of iron ball measurement.

Assessment of Bone Metastasis using Nuclear Medicine Imaging in Breast Cancer : Comparison between PET/CT and Bone Scan (유방암 환자에서 골전이에 대한 핵의학적 평가)

  • Cho, Dae-Hyoun;Ahn, Byeong-Cheol;Kang, Sung-Min;Seo, Ji-Hyoung;Bae, Jin-Ho;Lee, Sang-Woo;Jeong, Jin-Hyang;Yoo, Jeong-Soo;Park, Ho-Young;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.1
    • /
    • pp.30-41
    • /
    • 2007
  • Purpose: Bone metastasis in breast cancer patients are usually assessed by conventional Tc-99m methylene diphosphonate whole-body bone scan, which has a high sensitivity but a poor specificity. However, positron emission tomography with $^{18}F-2-deoxyglucose$ (FDG-PET) can offer superior spatial resolution and improved specificity. FDG-PET/CT can offer more information to assess bone metastasis than PET alone, by giving a anatomical information of non-enhanced CT image. We attempted to evaluate the usefulness of FDG-PET/CT for detecting bone metastasis in breast cancer and to compare FDG-PET/CT results with bone scan findings. Materials and Methods: The study group comprised 157 women patients (range: $28{\sim}78$ years old, $mean{\pm}SD=49.5{\pm}8.5$) with biopsy-proven breast cancer who underwent bone scan and FDG-PET/CT within 1 week interval. The final diagnosis of bone metastasis was established by histopathological findings, radiological correlation, or clinical follow-up. Bone scan was acquired over 4 hours after administration of 740 MBq Tc-99m MDP. Bone scan image was interpreted as normal, low, intermediate or high probability for osseous metastasis. FDG PET/CT was performed after 6 hours fasting. 370 MBq F-18 FDG was administered intravenously 1 hour before imaging. PET data was obtained by 3D mode and CT data, used as transmission correction database, was acquired during shallow respiration. PET images were evaluated by visual interpretation, and quantification of FDG accumulation in bone lesion was performed by maximal SUV(SUVmax) and relative SUV(SUVrel). Results: Six patients(4.4%) showed metastatic bone lesions. Four(66.6%) of 6 patients with osseous metastasis was detected by bone scan and all 6 patients(100%) were detected by PET/CT. A total of 135 bone lesions found on either FDG-PET or bone scan were consist of 108 osseous metastatic lesion and 27 benign bone lesions. Osseous metastatic lesion had higher SUVmax and SUVrel compared to benign bone lesion($4.79{\pm}3.32$ vs $1.45{\pm}0.44$, p=0.000, $3.08{\pm}2.85$ vs $0.30{\pm}0.43$, p=0.000). Among 108 osseous metastatic lesions, 76 lesions showed as abnormal uptake on bone scan, and 76 lesions also showed as increased FDG uptake on PET/CT scan. There was good agreement between FDG uptake and abnormal bone scan finding (Kendall tau-b : 0.689, p=0.000). Lesion showed increased bone tracer uptake had higher SUVmax and SUVrel compared to lesion showed no abnormal bone scan finding ($6.03{\pm}3.12$ vs $1.09{\pm}1.49$, p=0.000, $4.76{\pm}3.31$ vs $1.29{\pm}0.92$, p=0.000). The order of frequency of osseous metastatic site was vertebra, pelvis, rib, skull, sternum, scapula, femur, clavicle, and humerus. Metastatic lesion on skull had highest SUVmax and metastatic lesion on rib had highest SUVrel. Osteosclerotic metastatic lesion had lowest SUVmax and SUVrel. Conclusion: These results suggest that FDG-PET/CT is more sensitive to detect breast cancer patients with osseous metastasis. CT scan must be reviewed cautiously skeleton with bone window, because osteosclerotic metastatic lesion did not showed abnormal FDG accumulation frequently.

The accuracy of reformatted images using a new virtual 3-dimensional dental implant system (국내에서 개발된 3차원 임플란트 가상시술 시스템에 의한 영상재구성상의 정확도)

  • Choi Jin-Seok;Kim Eun-Kyung;Han Won-Jeong
    • Imaging Science in Dentistry
    • /
    • v.33 no.3
    • /
    • pp.187-193
    • /
    • 2003
  • Purpose: To compare the measurements of the mandible and the detectability of the mandibular canal on reformatted images using a newly developed 3-dimensional implant simulation program with traditionally used CT multiplanar reconstruction program and true measurements. Materials and Methods: Ten dry dog mandibles were used in this study. Occlusal templates for CT examination were fabricated and marked with gutta perch a at ten sites. Axial CT scans were taken and reconstructed using DentaScan (D group) and Vimplant program (V group), and each mandible was sectioned at the previously marked sites (R group). Maximum vertical height (H) and maximum width (W) of the mandible, the distances from buccal border of the mandibular canal to the most buccal aspect of the mandible (X), and the distance from the superior border of the mandibular canal to the alveolar crest (Y) were measured, and the mandibular measurements in each group were compared. Detectability of mandibular canal was evaluated using a 3-point scale in both V and D groups by three oral radiologists and compared. Results: H in the V group was slightly greater than that in the D group, and Wand X in the V group was slightly less than those in the D group. H in the V group was less than that in the R group, and Wand X in the V group was larger than those in the R group. The detectability of the mandibular canal did not show statistically significant differences between V and D groups. Conclusion: The results of the experiment show that the newly developed, inexpensive Vimplant/TM/ simulation program can be used as an alternative to the traditionally used, and more expensive CT multiplanar reconstruction program.

  • PDF

Customized Cranioplasty Implants Using Three-Dimensional Printers and Polymethyl-Methacrylate Casting

  • Kim, Bum-Joon;Hong, Ki-Sun;Park, Kyung-Jae;Park, Dong-Hyuk;Chung, Yong-Gu;Kang, Shin-Hyuk
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.6
    • /
    • pp.541-546
    • /
    • 2012
  • Objective : The prefabrication of customized cranioplastic implants has been introduced to overcome the difficulties of intra-operative implant molding. The authors present a new technique, which consists of the prefabrication of implant molds using three-dimensional (3D) printers and polymethyl-methacrylate (PMMA) casting. Methods : A total of 16 patients with large skull defects (>100 $cm^2$) underwent cranioplasty between November 2009 and April 2011. For unilateral cranial defects, 3D images of the skull were obtained from preoperative axial 1-mm spiral computed tomography (CT) scans. The image of the implant was generated by a digital subtraction mirror-imaging process using the normal side of the cranium as a model. For bilateral cranial defects, precraniectomy routine spiral CT scan data were merged with postcraniectomy 3D CT images following a smoothing process. Prefabrication of the mold was performed by the 3D printer. Intraoperatively, the PMMA implant was created with the prefabricated mold, and fit into the cranial defect. Results : The median operation time was $184.36{\pm}26.07$ minutes. Postoperative CT scans showed excellent restoration of the symmetrical contours and curvature of the cranium in all cases. The median follow-up period was 23 months (range, 14-28 months). Postoperative infection was developed in one case (6.2%) who had an open wound defect previously. Conclusion : Customized cranioplasty PMMA implants using 3D printer may be a useful technique for the reconstruction of various cranial defects.

A proposal of soft tissue landmarks for craniofacial analysis using three-dimensional laser scan imaging (3차원 레이저 스캔을 이용한 안면 연조직 분석을 위한 계측점의 제안)

  • Baik, Hyoung-Seon;Lee, Hwa-Jin;Jeon, Jai-Min
    • The korean journal of orthodontics
    • /
    • v.36 no.1 s.114
    • /
    • pp.1-13
    • /
    • 2006
  • Three-dimensional (3-D) laser scans can provide a 3-D image of the face and it is efficient in examining specific structures of the craniofacial soft tissues. Due to the increasing concerns with the soft tissues and expansion of the treatment range, a need for 3-D soft tissue analysis has become urgent. Therefore, the purpose of this study was to evaluate the scanning error of the Vivid 900 (Minolta, Tokyo, Japan) 3-D laser scanner and Rapidform program (Inus Technology Inc., Seoul, Korea) and to evaluate the mean error and the magnification percentage of the image obtained from 3-D laser scans. In addition, soft tissue landmarks that are easy to designate and reproduce in 3-D images of normal, Class II and Class III malocclusion patients were obtained. The conclusions are as follows; scanning errors of the Vivid 900 3-D laser scanner using a manikin were 0.16 mm in the X axis, 0.15 mm in the Y axis, and 0.15 mm in the Z axis. In the comparison of actual measurements from the manikin and the 3-D image obtained from the Rapidform program, the mean error was 0.37 mm and the magnification was 0.66%. Except for the right soft tissue gonion from the 3-D image, errors of all soft tissue landmarks were within 2.0 mm. Glabella, soft tissue nasion, endocanthion, exocanthion, pronasale, subnasale, nasal alare, upper lip point, cheilion, lower lip point, soft tissue B point, soft tissue pogonion, soft tissue menton and preaurale had especially small errors. Therefore, the Rapidform program can be considered a clinically efficient tool to produce and measure 3-D images. The soft tissue landmarks proposed above are mostly anatomically important points which are also easily reproducible. These landmarks can be beneficial in 3-D diagnosis and analysis.

The study of the stereo X-ray system for automated X-ray inspection system using 3D-reconstruction shape information (3차원 형상복원 정보 기반의 검색 자동화를 위한 스테레오 X-선 검색장치에 관한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.2043-2050
    • /
    • 2014
  • As most the scanning systems developed until now provide radiation scan plane images of the inspected objects, there has been a limitation in judging exactly the shape of the objects inside a logistics container exactly with only 2-D radiation image information. As a radiation image is just the density information of the scanned object, the direct application of general stereo image processing techniques is inefficient. So we propose that a new volume-based 3-D reconstruction algorithm. Experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for X-ray inspection. For validation of the proposed shape reconstruction algorithm using volume, 15 samples were scanned and reconstructed to restore the shape using an X-ray stereo inspection system. Reconstruction results of the objects show a high degree of accuracy compared to the width (2.56%), height (6.15%) and depth (7.12%) of the measured value for a real object respectively. In addition, using a K-Mean clustering algorithm a detection efficiency of 97% is achieved. The results of the reconstructed shape information using the volume based shape reconstruction algorithm provide the depth information of the inspected object with stereo X-ray inspection. Depth information used as an identifier for an automated search is possible and additional studies will proceed to retrieve an X-ray inspection system that can greatly improve the efficiency of an inspection.

Classification of Seabed Physiognomy Based on Side Scan Sonar Images

  • Sun, Ning;Shim, Tae-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.3E
    • /
    • pp.104-110
    • /
    • 2007
  • As the exploration of the seabed is extended ever further, automated recognition and classification of sonar images become increasingly important. However, most of the methods ignore the directional information and its effect on the image textures produced. To deal with this problem, we apply 2D Gabor filters to extract the features of sonar images. The filters are designed with constrained parameters to reduce the complexity and to improve the calculation efficiency. Meanwhile, at each orientation, the optimal Gabor filter parameters will be selected with the help of bandwidth parameters based on the Fisher criterion. This method can overcome some disadvantages of the traditional approaches of extracting texture features, and improve the recognition rate effectively.

Making Aids of Magnetic Resonacnce Image Susing 3D Printing Technology (3D 프린트를 활용한 자기공명영상검사 보조기구 제작)

  • Choi, Woo jeon;Ye, Soo young;Kim, Dong hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.403-409
    • /
    • 2016
  • MRI scan is a useful method in the diagnosis of musculoskeletal excellent contrast of the organization. Depending on the patient's musculoskeletal examinations state the type of aids provided the aid is used there is also challenging as well as the costs do not vary. This study was produced by the use of 3D printing technology, an MRI aids. Aids in the production process, then through 3D modeling and then convert stl files using (3D MAX.2014, Fusion360) slicing programs (Cubicreater 2.1ver., Cura 15.4ver) converted to G-code printed on the FDM scheme (Cubicon Style, output was MICRO MAKE). Output is, but in the FDM to evaluate the SNR on the MRI images were compared to the test is the case before use, and then to produce a Water Phantom case of a PLA, ABS, a TPU thickness 3mm, using aids before, It was evaluated in a clinical image after qualitatively. Obtaining an image of SNR Warter Phantom appeared to have been evaluated as T1 NON $123.778{\pm}28.492$, PLA $123.522{\pm}28.373$, ABS $124.461{\pm}25.716$, TPU $124.843{\pm}27.272$. T2 NON $127.421{\pm}26.949$, was rated as PLA $124.501{\pm}27.768$, ABS $128.663{\pm}26.549$, TPU $130.171{\pm}25.998$. The results did not show statistically significant differences. The use of assistive devices before and after images Clinical evaluation method palliative $3.20{\pm}0.88$, $3.95{\pm}0.76$ after using the aids used to aid improved the quality of the image. Production of the auxiliary mechanism using a future 3D printing is expected are thought to be used clinically, it can be an aid making safe and comfortable than the inspection of the patient is an alternative to improve the problems of the aids used in the conventional do.

A Study on Droplet Distribution of Bio Diesel Fuels Using Immersion Sampling Method (액침법에 의한 바이오디젤유의 액적분포에 관한 연구)

  • Kim, M.S.;Doh, H.C.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.5-10
    • /
    • 2006
  • The purpose of this study is to measure the droplet distribution and Sauter mean diameter(SMD) of biodiesel fuel, using the immersion sampling method. This method involves using an optical microscope and a CCD camera, to take an image of the droplets. These images are then measured by using a 'Sigma Scan' processing program. The results of the above experiment are summarized as followed ; (1) There can be as much as a 10% error rate when measuring the diameter of these droplets, using the image processing method and the naked eye. (2) The result of droplet size distribution test, TVO(transesterified vegetable oil) big size droplet distribution were increased at ambient pressure $6kg/cm^2$. (3) When ambient pressure increased $6kg/cm^2$ above, SMD variation of TVO and UVO(used vegetable oil) 30 are small. (4) On Rosin-Rammler analysis, droplets size distribution of UVO(used vegetable oil) 30 uniform more than TVO 20 on ambient pressure $1kg/cm^2$.

  • PDF