• Title/Summary/Keyword: 3D Face Modeling

Search Result 83, Processing Time 0.031 seconds

3D Face Modeling based on 3D Morphable Shape Model (3D 변형가능 형상 모델 기반 3D 얼굴 모델링)

  • Jang, Yong-Suk;Kim, Boo-Gyoun;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.212-227
    • /
    • 2008
  • Since 3D face can be rotated freely in 3D space and illumination effects can be modeled properly, 3D face modeling Is more precise and realistic in face pose, illumination, and expression than 2D face modeling. Thus, 3D modeling is necessitated much in face recognition, game, avatar, and etc. In this paper, we propose a 3D face modeling method based on 3D morphable shape modeling. The proposed 3D modeling method first constructs a 3D morphable shape model out of 3D face scan data obtained using a 3D scanner Next, the proposed method extracts and matches feature points of the face from 2D image sequence containing a face to be modeled, and then estimates 3D vertex coordinates of the feature points using a factorization based SfM technique. Then, the proposed method obtains a 3D shape model of the face to be modeled by fitting the 3D vertices to the constructed 3D morphable shape model. Also, the proposed method makes a cylindrical texture map using 2D face image sequence. Finally, the proposed method builds a 3D face model by rendering the 3D face shape model with the cylindrical texture map. Through building processes of 3D face model by the proposed method, it is shown that the proposed method is relatively easy, fast and precise than the previous 3D face model methods.

3D Face Modeling using Face Image

  • Kim, Sanghyuk;Ban, Yuseok;Park, Changhyun;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.10-12
    • /
    • 2015
  • Purpose It has been stated that patient satisfaction is the crucial factor for determining success in plastic surgery. The convergence of medical science and computer vision has made easier to satisfy patients who wants to have plastic surgery. In this paper, we try to apply 3D face modeling in plastic surgical area. Materials and Methods The author introduces a method for accurate 3D face modeling techniques using a statistical model-based 3D face modeling approach in a mirror system. Results We could successfully obtain highly accurate 3D face shape results. Conclusion The method suggested could be used for acquiring 3D face models from 2D face image and the result obtained from this could be effectively used for plastic surgical areas.

Pose-normalized 3D Face Modeling for Face Recognition

  • Yu, Sun-Jin;Lee, Sang-Youn
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.984-994
    • /
    • 2010
  • Pose variation is a critical problem in face recognition. Three-dimensional(3D) face recognition techniques have been proposed, as 3D data contains depth information that may allow problems of pose variation to be handled more effectively than with 2D face recognition methods. This paper proposes a pose-normalized 3D face modeling method that translates and rotates any pose angle to a frontal pose using a plane fitting method by Singular Value Decomposition(SVD). First, we reconstruct 3D face data with stereo vision method. Second, nose peak point is estimated by depth information and then the angle of pose is estimated by a facial plane fitting algorithm using four facial features. Next, using the estimated pose angle, the 3D face is translated and rotated to a frontal pose. To demonstrate the effectiveness of the proposed method, we designed 2D and 3D face recognition experiments. The experimental results show that the performance of the normalized 3D face recognition method is superior to that of an un-normalized 3D face recognition method for overcoming the problems of pose variation.

Pose-Normalized 3D Face Modeling (포즈 정규화된 3D 얼굴 모델링 기법)

  • Yu, Sun-Jin;Kim, Sang-Ki;Kim, Il-Do;Lee, Sang-Youn
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.455-456
    • /
    • 2006
  • This paper presents an automatic pose-normalized 3D face data acquisition method using 2D and 3D information. We propose an automatic pose-normalized 3D face acquisition method that accomplishes 3D face modeling and 3D face pose-normalization at once. The proposed method uses 2D information with AAM (Active Appearance Model) and 3D information with 3D normal vector. The 3D face modeling system consists of 2 cameras and 1 projector. In order to verify proposed pose-normalized 3D modeling method, we made an experiment for 2.5D face recognition. The experimental result shows that proposed method is robust against pose variation.

  • PDF

Single Image-Based 3D Face Modeling for 3D Printing (3D 프린팅을 위한 단일 영상 기반 3D 얼굴 모델링 연구)

  • Song, Eungyeol;Koh, Wan-Ki;Yu, Sunjin
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.571-576
    • /
    • 2016
  • 3D printing has recently been used in various fields. Among various applications, 3D face data must be generated for 3D face printing. A laser scanner is used to acquire 3D face data, but there is a restriction that a person should not move during scanning. In this paper, we propose a 3D face modeling method based on a single image and a face transformation system to use the generated 3D face for virtual cosmetic surgery. We have defined facial feature points from the 3D face database for 3D face data generation. After extracting feature points from a single face image, 3D face of the input face image is generated corresponding to the 3D face feature points defined from the 3D face database. After 3D face modeling, 3D face modification part is applied for use such as virtual cosmetic surgery.

Light 3D Modeling with mobile equipment (모바일 카메라를 이용한 경량 3D 모델링)

  • Ju, Seunghwan;Seo, Heesuk;Han, Sunghyu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.107-114
    • /
    • 2016
  • Recently, 3D related technology has become a hot topic for IT. 3D technologies such as 3DTV, Kinect and 3D printers are becoming more and more popular. According to the flow of the times, the goal of this study is that the general public is exposed to 3D technology easily. we have developed a web-based application program that enables 3D modeling of facial front and side photographs using a mobile phone. In order to realize 3D modeling, two photographs (front and side) are photographed with a mobile camera, and ASM (Active Shape Model) and skin binarization technique are used to extract facial height such as nose from facial and side photographs. Three-dimensional coordinates are generated using the face extracted from the front photograph and the face height obtained from the side photograph. Using the 3-D coordinates generated for the standard face model modeled with the standard face as a control point, the face becomes the face of the subject when the RBF (Radial Basis Function) interpolation method is used. Also, in order to cover the face with the modified face model, the control point found in the front photograph is mapped to the texture map coordinate to generate the texture image. Finally, the deformed face model is covered with a texture image, and the 3D modeled image is displayed to the user.

3D Face Modeling from a Frontal Face Image by Mesh-Warping (메쉬 워핑에 의한 정면 영상으로부터의 3D 얼굴 모델링)

  • Kim, Jung-Sik;Kim, Jin-Mo;Cho, Hyung-Je
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.108-118
    • /
    • 2013
  • Recently the 3D modeling techniques were developed rapidly due to rapid development of computer vision, computer graphics with the excellent performance of hardware. With the advent of a variety of 3D contents, 3D modeling technology becomes more in demand and it's quality is increased. 3D face models can be applied widely to such contents with high usability. In this paper, a 3D face modeling is attempted from a given single 2D frontal face image. To achieve the goal, we thereafter the feature points using AAM are extracted from the input frontal face image. With the extracted feature points we deform the 3D general model by 2-pass mesh warping, and also the depth extraction based on intensity values is attempted to. Throughout those processes, a universal 3D face modeling method with less expense and less restrictions to application environment was implemented and it's validity was shown through experiments.

Texture Mapping and 3D Face Modeling using Two Views of 2D Face Images (2장의 2차원 얼굴영상을 이용한 텍스쳐 생성과 자동적인 3차원 얼굴모델링)

  • Weon, Sun-Hee;Kim, Gye-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.9
    • /
    • pp.705-709
    • /
    • 2009
  • In this paper, we propose 3d face modeling using two orthogonal views of 2D face images and automatically facial feature extraction. Th proposed technique consists of 2 parts, personalization of 3d face model and texture mapping.

Web-based 3D Face Modeling System for Hairline Modification Surgery (헤어라인 교정 시술을 위한 웹기반 얼굴 3D 모델링)

  • Lee, Sang-Wook;Jang, Yoon-Hee;Jeong, Eun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.91-101
    • /
    • 2011
  • This research aims to suggest web-based 3D face modeling system for hairline modification surgery. As public interests in beauty regarding face escalate with era of wide persoanl mobile smart iCT devices, need for medical information system is urgent and increasing demand. This research attempted to build 3D facing modeling library deploying conventional technology and proprietary software available. Implications from the our experiment found that problems and requirement for developing new web based standard. We suggest new system from our experiment and literature review regarding relevant technologies. Main features of our suggested systems is based on studies regarding hair loss treatment such as medical science, beauty studies and information technology. This system processes input images of 2D frontal and profile pictures of face into 3D face modeling with mesh-data. The mesh data is compatible with web standard technology including SVG and Canvas Tag supported natively by HTML5.

A 3D Face Modeling Method Using Region Segmentation and Multiple light beams (지역 분할과 다중 라이트 빔을 이용한 3차원 얼굴 형상 모델링 기법)

  • Lee, Yo-Han;Cho, Joo-Hyun;Song, Tai-Kyong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.6
    • /
    • pp.70-81
    • /
    • 2001
  • This paper presents a 3D face modeling method using a CCD camera and a projector (LCD projector or Slide projector). The camera faces the human face and the projector casts white stripe patterns on the human face. The 3D shape of the face is extracted from spatial and temporal locations of the white stripe patterns on a series of image frames. The proposed method employs region segmentation and multi-beam techniques for efficient 3D modeling of hair region and faster 3D scanning respectively. In the proposed method, each image is segmented into face, hair, and shadow regions, which are independently processed to obtain the optimum results for each region. The multi-beam method, which uses a number of equally spaced stripe patterns, reduces the total number of image frames and consequently the overall data acquisition time. Light beam calibration is adopted for efficient light plane measurement, which is not influenced by the direction (vertical or horizontal) of the stripe patterns. Experimental results show that the proposed method provides a favorable 3D face modeling results, including the hair region.

  • PDF