• Title/Summary/Keyword: 3D FEA

Search Result 229, Processing Time 0.027 seconds

Effect of dissimilar metal SENB specimen width and crack length on stress intensity factor

  • Murthy, A. Ramachandra;Muthu Kumaran, M.;Saravanan, M.;Gandhi, P.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1579-1586
    • /
    • 2020
  • Dissimilar metal joints (DMJs) are more common in the application of piping system of many industries. A 2- D and 3-D finite element analysis (FEA) is carried out on dissimilar metal Single Edged Notch Bending (DMSENB) specimens fabricated from ferritic steel, austenitic steel and Inconel - 182 alloy to study the behavior of DMJs with constraints by using linear elastic fracture mechanics (LEFM) principles. Studies on DMSENB specimens are conducted with respect to (i) dissimilar metal joint width (DMJW) (geometrical constraints) (5 mm, 10 mm, 20 mm, 30 mm and 50 mm) (ii) strength mismatch (material constraints) and (iii) crack lengths (16 mm, 20 mm and 24 mm) to study the DMJ behavior. From the FEA investigation, it is observed that (i) SIF increases with increase of crack length and DMJWs (ii) significant constraint effect (geometry, crack tip and strength mismatch) is observed for DMJWs of 5 mm and 10 mm (iii) stress distribution at the interfaces of DMSENB specimen exhibits clear indication of strength mismatch (iv) 3-D FEA yields realistic behavior (v) constraint effect is found to be significant if DMJW is less than 20 mm and the ratio of specimen length to the DMJW is greater than 7.4.

Analysis of an Interior Permanent-Magnet Machines with an Axial Overhang Structure based on Lumped Magnetic Circuit Model

  • Seo, Jangho;Seo, Jung-Moo
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.94-101
    • /
    • 2016
  • This paper shows a new magnetic field analysis of an interior permanent magnet (IPM) machines with an axial overhang structure wherein the rotor axial length exceeds that of the stator. The rotor overhang used to increase torque density of the radial flux machine is difficult to analyze because of extra consideration of axial direction, and thus it is general for machine designer to take 3-D finite element analysis (FEA) capable of considering both radial and axial complicated geometry in the machine. However, it requires too much computing time for preliminary design especially for optimization process. Therefore, in this paper a 2-D analytic method using a lumped magnetic circuit model (LMCM) is proposed to overcome the problem. For the analysis of overhang effect, the magnetic circuit is separated and solved from overhang and non-overhang regions respectively. For the validation of proposed concept, 3-D finite element analysis (FEA) is performed. From the analysis results, it is shown that our new proposed method presents good performance in terms of calculating electromotive force (EMF) and torque within a short time. Therefore, the proposed model can be useful in design of IPM with an overhang structure.

Three-dimensional effective properties of layered composites with imperfect interfaces

  • Sertse, Hamsasew;Yu, Wenbin
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.639-650
    • /
    • 2017
  • The objective of this paper is to obtain three-dimensional (3D) effective properties for layered composites with imperfect interfaces using mechanics of structure genome. The imperfect interface is modeled using linear traction-displacement model that allows small infinitesimal displacement jump across the interface. The predictions obtained from the current analysis are compared with the 3D finite element analysis (FEA). In this study, it is found that the present model shows excellent agreement with the results obtained using 3D FEA by employing periodic boundary conditions. The prediction also reveals that in-plane longitudinal and shear moduli, and all Poisson's ratios are observed to be not affected by the interfacial stiffness while the predictions of transverse longitudinal and shear moduli are significantly influenced by interfacial stiffness.

Development of an Automation Tool for the Three-Dimensional Finite Element Analysis of Machine Tool Spindles

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.166-171
    • /
    • 2015
  • In this study, an automation tool was developed for rapid evaluation of machine tool spindle designs with automated three-dimensional finite element analysis (3D FEA) using solid elements. The tool performs FEA with the minimum data of point coordinates to define the section of the spindle shaft and bearing positions. Using object-oriented programming techniques, the tool was implemented in the programming environment of a CAD system to make use of its objects. Its modules were constructed with the objects to generate the geometric model and then to convert it into the FE model of 3D solid elements at the workbenches of the CAD system using the point data. Graphic user interfaces were developed to allow users to interact with the tool. This tool is helpful for identification of a near optimal design of the spindle based on, for example, stiffness with multiple design changes and then FEAs.

An Application of Equivalent Magnetic Circuit method to the analysis of Claw-pole type generator (등가 자기회로법을 이용한 Claw-pole type generator의 특성해석)

  • Jung, Jae-Woo;Kwon, Soon-O;Lee, Sang-Ho;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.120-122
    • /
    • 2005
  • Magnetic field analysis of claw-pole type generator using equivalent circuit is presented in this paper. On the basis of 3D geometry and flux paths, equivalent magnetic circuit is designed and field analysis is performed by solving the circuit. Non-linear characteristic of material is considered for precise analysis results. 3D FEA is performed to verify analysis results, and flux densities in rotor and stator regions are compared. Calculated no-load back emf for field input voltage and speed are verified by experiment. Comparing to 3D FEA, presented method provides precise results with instant calculation time.

  • PDF

Design of High Temperature Superconducting Magnet with Magnetic Material (자성체를 포함하는 고온초전도 마그네트의 설계)

  • Jo, Young-Sik;Kwon, Young-Kil;Kim, Young-Kyoun;Lee, Geun-Ho;Hong, Jung-Pyo;Ryu, Kang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.8
    • /
    • pp.367-373
    • /
    • 2001
  • This paper presents racetrack High Temperature Superconducting (HTS) magnet with iron plates to achieve the maximum current-carrying capacity and the simple shape that can easily be wound and jointed. On the basis of the magnetic field analysis using Biot-Savart's law and 3 Dimensional Finite Element Analysis (3D FEA), this study is focused on the function of iron plates, which is to obtain smaller B${\perp}$, and stress and strain condition of Ag-sheathed Bi-2223 37-filament HTS tapes are considered. Moreover, the measured performance of the magnet with iron plates improved by 50% on the basis of initial magnet.

  • PDF

Design of HTS Magnet with Magnetic Material (자성체를 사용하는 고온초전도 마그네트의 설계)

  • Jo, Young-Sik;Hong, Jung-Pyo;Lee, Ju;Jang, Hyun-Man;Sohn, Myoung-Hwan;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.98-101
    • /
    • 2001
  • This work presents racetrack High Temperature Superconducting (HTS) magnet with iron plates to achieve the maximum current-carrying capacity and the simple shape that can easily be wound and jointed. The shape, position and kinds of iron plates are chosen by using 3 Dimensional Finite Element Analysis (3d FEA) considering magnetic saturation of iron plates. The racetrack HTS magnet with iron plates, magnet having optimized current distribution and initial magnet are compared with each other through 3D FEA, manufacturing and testing these magnets. The measured performance of the magnet with iron plates improved by 50% on the basis of initial magnet.

  • PDF

Stator Core with Slits in Transverse Flux Rotary Machine to Reduce Eddy Current Loss

  • Lee, Ji-Young;Koo, Dae-Hyun;Kang, Do-Hyun;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.51-55
    • /
    • 2012
  • This paper presents an eddy current loss analysis for a transverse flux rotary machine (TFRM) with laminated stator cores, which consist of inner and outer cores whose laminated directions are perpendicular to each other. Although the TFRM is laminated to reduce eddy current losses, it still exhibits rapidly increasing core losses as the frequency increases. To solve this problem, slits are introduced to the stator outer core. 3-dimensional finite element analysis (3D FEA) based on the T-${\Omega}$ formulation is used to solve the eddy-current problem for a various numbers of slits in the nonlinear lamination core. The effects of the slits are confirmed using experiment data and 3D FEA results.

Design of a Magnetostrictive MicroActuator (자기변형 마이크로 작동기의 설계)

  • 김도연;박영우;임민철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.174-181
    • /
    • 2004
  • This paper presents the development of a magnetostrictive microactuator. The structural and functional requirements are as follows: it must be a millimeter structure and must achieve controllable displacement with nanometer resolution. Finite Element Analysis(FEA) is used to determine the structure with the most uniform and highest magnetic flux density along the Terfenol-D rod. The microactuator prototype 1 is designed and made based on the FEA. It is observed that the microactuator show some level of hysteresis and that it produces 25 newton in force and 3 ${\mu}{\textrm}{m}$ in displacement with 1.5 amperes of current, and resolution of 250 nm per 0.1 amperes. To improve the performance of the microactuator prototype 1, microactuator prototype 2 is made again with a permanent magnet (PM). It is observed that the microactuator prototype 2 gene.ates 3.3 ${\mu}{\textrm}{m}$ in displacement with 0.9 amperes of current. It means that the microactuator prototype 2 performs better than the microactuator prototype 1.