• Title/Summary/Keyword: 3D Design

Search Result 10,041, Processing Time 0.042 seconds

Development and Application of Tunnel Design Automation Technology Using 3D Spatial Information : BIM-Based Design for Namhae Seomyeon - Yeosu Shindeok National Highway Construction (3D 공간정보를 활용한 터널 설계 자동화 기술 개발 및 적용 사례 : 남해 서면-여수 신덕 국도 건설공사 BIM기반 설계를 중심으로)

  • Eunji Jo;Woojin Kim;Kwangyeom Kim;Jaeho Jung;Sanghyuk Bang
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.209-227
    • /
    • 2023
  • The government continues to announce measures to revitalize smart construction technology based on BIM for productivity innovation in the construction industry. In the design phase, the goal is design automation and optimization by converging BIM Data and other advanced technologies. Accordingly, in the basic design of the Namhae Seomyeon-Yeosu Sindeok National Road Construction Project, a domestic undersea tunnel project, BIM-based design was carried out by developing tunnel design automation technology using 3D spatial information according to the tunnel design process. In order to derive the optimal alignment, more than 10,000 alignment cases were generated in 36hr using the generative design technique and a quantitative evaluation of the objective functions defined by the designer was performed. AI-based ground classification and 3D Geo Model were established to evaluate the economic feasibility and stability of the optimal alignment. AI-based ground classification has improved its precision by performing about 30 types of ground classification per borehole, and in the case of the 3D Geo Model, its utilization can be expected in that it can accumulate ground data added during construction. In the case of 3D blasting design, the optimal charge weight was derived in 5 minutes by reviewing all security objects on the project range on Dynamo, and the design result was visualized in 3D space for intuitive and convenient construction management so that it could be used directly during construction.

AR based ornament design system for 3D printing

  • Aoki, Hiroshi;Mitanin, Jun;Kanamori, Yoshihiro;Fukui, Yukio
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.47-54
    • /
    • 2015
  • In recent years, 3D printers have become popular as a means of outputting geometries designed on CAD or 3D graphics systems. However, the complex user interfaces of standard 3D software can make it difficult for ordinary consumers to design their own objects. Furthermore, models designed on 3D graphics software often have geometrical problems that make them impossible to output on a 3D printer. We propose a novel AR (augmented reality) 3D modeling system with an air-spray like interface. We also propose a new data structure (octet voxel) for representing designed models in such a way that the model is guaranteed to be a complete solid. The target shape is based on a regular polyhedron, and the octet voxel representation is suitable for designing geometrical objects having the same symmetries as the base regular polyhedron. Finally, we conducted a user test and confirmed that users can intuitively design their own ornaments in a short time with a simple user interface.

Developing Design Process of 3D Printing Concrete Mix Proportion (3D 프린팅 콘크리트 배합설계 프로세스에 관한 연구)

  • Chen, Chao;Park, Yoo-Na;Yoo, Seung-Kyu;Bae, Sung-Chu;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.7 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • 3D concrete printing technology builds structural components layer-by-layer with concrete extruded through a nozzle without using forms. This technology can simplify construction processes by optimizing design flexibility, construction time, and cost. Furthermore, the 3D printing technology is easy to make an irregularly shaped and function embedded building(or object) which is difficult to be constructed by conventional construction method. However, the 3D printing concrete is not suitable for current commercial standard and the material itself. It is also difficult to apply it to the construction site due to the lack of initial strength and the nozzle which is clogged during the process. The research of mix proportion design process for 3D printing concrete which differs from the conventional concrete is necessary in order to solve the problems. This paper aims to calculate the 3D printing concrete mix proportion design process based on the mix materials and performance information derived from the previous researches. Therefore, the usage variation range, mutual influence relationship, and the importance priority of the mix proportion are analyzed. Based on this results, the basic design process of 3D printing concrete which contains planning design phase, basic design phase and validating performance phase is suggested. We anticipate to confirm applicability verification about the actual production by referring to this 3D printing concrete mix proportion study. In the future, this study can be utilized for blueprint of the 3D printing concrete mix proportion.

Interactive 3D Convergence Contents Authoring Tool Design for Smart Learning (스마트교육을 위한 인터랙티브 3D 융합 콘텐츠 저작도구 설계)

  • Roh, Chang Hyun
    • Journal of Digital Contents Society
    • /
    • v.17 no.5
    • /
    • pp.425-432
    • /
    • 2016
  • There is little study related to the 3D convergence contents authoring tool for teacher. In this study, we purposed the design of the interactive 3D convergence contents authoring tool for a teacher. To draw the design, firstly, we investigated the authoring environment of teachers and interviewed teachers. Based on this investigations, we proposed the functional requirement and UI/UX(User Interface/User Experience) design of it. And we investigated the level of focusing group satisfication with the UI/UX design. Based on these results, we will implement the authoring tool.

3D dress modeling and Its 2D pattern development to activate the use of 3D virtual design process (가상 의복 제작 프로세스 활성화를 위한 드레스의 모델링과 정밀 패턴의 설계 및 검증)

  • Lee, Ji-Young;Hong, Kyung-Hi
    • Science of Emotion and Sensibility
    • /
    • v.14 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • There still is a limitation in the usage of 3D clothes model in the production line due to the lack of compatibility between 3D modeling software, and its accurate 2D pattern making software, especially for free formed dress with tight fitted zone and draped part. In this study, obstacles in the 3D direct dress design process was overcome by solving the compatibility among each step of 3D virtual design process as well as adopting 3D-2D direct pattern development program called 2C-AN. Efficacy of making 2D pattern from 3D dress design using 2C-AN program developed by the authors was examined during the course of actual dress making process. Accurate ease over the fitted dress part was examined by 3D scanning technology, and the actual appearance of the draped part was compared with the simulation image of dress model. It was confirmed that the entire 3D design process and direct 2D pattern development proposed in this study was accurate enough to use in the 3D design process.

  • PDF

Application Two-Dimensional Pattern Development of Cycling Tights based on the Three-Dimensional Body Scan Data of High School Male Cyclist

  • Park, Hyunjeong;Do, Wolhee
    • Fashion & Textile Research Journal
    • /
    • v.22 no.5
    • /
    • pp.595-606
    • /
    • 2020
  • This study develops an optimal two-dimensional (2D) pattern from three-dimensional human scan data by considering the cycling posture and dermatome of high school male cyclists. By analyzing the body surface change in the cycling posture and considering the dermatome of the lower limbs, the optimal cutting line setting and the development of cycling tights for individual cyclists were presented to provide data that could be used in the clothing industry. We designed three cycling tights to solve the size unsuitability. 3D design 1 is a non-extension design based on the analysis of the 3D human body scan data, in which parts were connected diagonally from the front of the knee to the back of the knee. 3D design 2 removed both the front and back to reduce air resistance during cycling. 3D design 3 did not have a cutting line on the front panel because of the air resistance during cycling in the front area. We analyzed the garment pressure for 8 points of lower body and performed a subjective evaluation of the 3D designed tights and the current cycling tights. The 3D design 1 in this study was well received in the omphalion, thigh, and hip area, while 3D design 3 was well received in the omphalion, thigh, hip, and bottom bands. Therefore, the LoNE of 3D design 1 was applied to the front, and the hip cutting line of 3D design 3 was applied to the back.

A Study on Load Cell Development by means of a Nano-Carbon Piezo-resistive Composite and 3D printing (탄소나노튜브 복합소재 전왜 특성과 3D 프린팅을 활용한 로드셀 개발 연구)

  • Kang, Inpil;Joung, Kwan Young;Choi, Beak Gyu;Kim, Sung Yong;Oh, Gwang Won;Kim, Byung Tak;Baek, Woon Kyung
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.97-102
    • /
    • 2020
  • This paper presents the basic research for the design and fabrication of a 3D-printed load cell made of NCPC (nano-carbon piezo-resistive composite). We designed a structure that can resonate at a low frequency range of about 5-6 Hz with ANSYS using sensitivity analysis and a response surface method. The design was verified by fabricating the device with a low-quality commercial 3D printer and ABS filament. We conducted a feasibility test for a commercial sensor using 1000 cyclic load tests at 0.3 Hz in a material testing system. A manufacturing process for the 3D printer filament based on the NCPC was also developed using the nano-composite process.