• Title/Summary/Keyword: 3D Crane Simulator

Search Result 6, Processing Time 0.022 seconds

A Study on Adaptive Control of 3D Crane Systems : Implementation of a Real-time Simulator (3D 크레인 시스템 적응제어에 관한 연구 : 실시간 시뮬레이터 구현)

  • Song, C.H.;Cho, H.C.;Lee, J.W.;Lee, Y.J.;Lee, K.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.36-41
    • /
    • 2008
  • A crane is very important mechanical systems in industrial applications to move huge objects. Especially, in marine port terminals, it is used to place container boxes at desired position within given operating time. However, such system is faced with environmental disturbance such as wind from the sea, thus crane control system is required to cope with this nature. This paper proposed robust and adaptive control algorithm of a complicated 3D crane against the environmental disturbance. We simplify a mathematical design procedure to derive our control algorithm. We conduct real-time experiment using a crane simulator to evaluate its superiority and reliability.

  • PDF

Development of VR-based Crane Simulator using Training Server (트레이닝 서버를 이용한 VR 기반의 크레인 시뮬레이터 개발)

  • Wan-Jik Lee;Geon-Young Kim;Seok-Yeol Heo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.703-709
    • /
    • 2023
  • It is most desirable to train with a real crane in an environment similar to that of a port for crane operation training in charge of loading and unloading in a port, but it has time and space limitations and cost problems. In order to overcome these limitations, VR(Virtual Reality) based crane training programs and related devices are receiving a lot of attention. In this paper, we designed and implemented a VR-based harbor crane simulator operating on an HMD. The simulator developed in this paper consists of a crane simulator program that operates on the HMD, an IoT driving terminal that processes trainees' crane operation input, and a training server that stores trainees' training information. The simulator program provides VR-based crane training scenarios implemented with Unity3D, and the IoT driving terminal developed based on Arduino is composed of two controllers and transmits the user's driving operation to the HMD. In particular, the crane simulator in this paper uses a training server to create a database of environment setting values for each educator, progress and training time, and information on driving warning situations. Through the use of such a server, trainees can use the simulator in a more convenient environment and can expect improved educational effects by providing training information.

The Development of Overhead Crane Simulator Using Open Source Physics Engine (오픈소스 물리엔진을 이용한 천장 크레인 시뮬레이터 개발)

  • Ok, Soo-Yol;Kim, Sung-Kil
    • Journal of Korea Game Society
    • /
    • v.9 no.5
    • /
    • pp.95-104
    • /
    • 2009
  • Recently, increasing numbers of games and simulators are being implemented by employing the physically-based modeling techniques for better realism. In this paper, we propose the implementation techniques for overhead crane simulator based on ODE, the well-known open source dynamic engine. By comparing the dynamic behavior of the proposed system with a commercial engine based simulator, the physical plausibility and the effectiveness of the ODE based OHC simulator are verified. We expect the proposed the OHC simulator can be successfully utilized for virtual training in various educational institutes.

  • PDF

A Study on Development of 3-D Simulator for H-Beam Robot Cutting and Optimization of Cutting Using the Simulator (H-beam 로봇 절단용 3차원 시뮬레이터의 개발과 이를 이용한 절단 최적화에 관한 연구)

  • Park, Ju-Yong;Kim, Yong-Uk
    • Journal of Welding and Joining
    • /
    • v.30 no.4
    • /
    • pp.44-48
    • /
    • 2012
  • H-beam used for stiffening the upper structure of ocean plant is cut in the various shapes. The cutting process of the H-beam is done manually and requires a long time and high cost. Therefore, automation of H-beam cutting is an important task. This research aims to develop a 3-D simulator to build the automatic H-beam cutting system and to determine the optimal cutting method. The automatic H-beam cutting system composes of 6 robots including 2 cutting robots hang to a crane and 1 conveyer. The appropriate system layout for covering the various sizes and types of H-beam was tested and determined using the simulator. The H-beam cutting system uses a hybrid type of plasma and gas cutting because of special cutting shapes of H-beam. The cutting area of each cutting method should be properly divided according to the size and shape of H-beam to shorten the total cutting time. Additionally the collision between a robot and a robot or a robot and H-beam should be avoided. The optimal cutting method for the shortest cutting time without the collision could be found for the various cutting conditions by use of the simulator. 2 simulation samples shows the availability of the simulator to find the optimal cutting method.

Graphic Simulator of Master/Slave Manipulator in Virtual Hot Cell

  • Kim, Sung-Hyun;Song, Tae-Gil;Lee, Jong-Yul;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.100.6-100
    • /
    • 2002
  • The crane and the master-slave manipulators (MSM) are widely used as a remote handling device in nuclear facilities such as the hot cell. The equipment to be installed in the hot cell should be optimally placed within the workspace of the wall-mounted slave manipulator for the maintenance operation. Also, the slave manipulator with the end effectors should be properly positioned and oriented for the dedicated maintenance operation. Hence, the workspace and the motion of the slave manipulator, as well as, the remote operation task should be analyzed before installing the manipulators and the hot cell equipment. For this purpose, the 3D graphic simulator, which simulates the remote operation o...

  • PDF

Design and Implementation of Virtual Reality Prototype Crane Training System using Unity 3D (Unity 3D를 이용한 가상현실 프로토타입 크레인 훈련 시스템 설계 및 구현)

  • Heo, Seok-Yeol;Kim, Geon-Young;Choi, Jung-Bin;Park, Ji-Woo;Jeon, Min-Ji;Lee, Wan-Jik
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.569-575
    • /
    • 2022
  • It is most desirable to build a crane training program in the same evvironment as the actual port, but it has problem such as time constraint and cost. To overcome these limitations, next-generation training programs based on AR/VR are receiving a lot of attention. In this paper, a prototype of a harbor crane training system based on virtual reality was designed and implemented. The system implemented in this paper consists of two elements: an Arduino-based IoT terminal and an HMD equipped with a Unity application program. The IoT terminal consists of 2 controllers, 2 toggle switches, and 8 button switches to process data generated according to the user's operation. The HMD uses Oculus Quest2 and is connected to the IoT terminal through wireless communication to provide user convenience. The training system implemented in this paper is expected to provide trainees with a training environment independent of time and place through virtual reality and to save time and money.