• Title/Summary/Keyword: 3D Analysis System

Search Result 3,989, Processing Time 0.035 seconds

The Application of CFD for the Duct System Design of CRW aircraft (CRW 비행체 덕트 시스템 설계를 위한 CFD의 활용)

  • Jung Y. W.;Jun Y. M.;Yang S. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.200-205
    • /
    • 2003
  • The Canard rotor/wing (CRW) aircraft concepts offer great potential for application by allowing the use of a common propulsion system for high-speed cruise and low-speed powered lift. Using the rotor for lift in both flight modes increases its utility. In the hovering mode, the exhausted gas from an gas turbine engine is accelerated through the duct system and it provides the tipjet power for rotor system enough to lift the aircraft. In the cruise mode, the rotor is fixed and the exhausted gas is extracted through the main nozzle, such that the aircraft is able to flight with high speed. The duct system was designed using 1-D fanno line flow theory and empirical data. However, the empirical data of the pressure loss coefficient for various bending and dividing ducts were not enough to design our duct system adaptively. Therefore, using 3-D CFD analysis we obtained the pressure loss coefficient for our duct models and chose the appropriate bending or diving duct type. In this paper, we used the CFD-ACE+ software package for the CFD analysis and the modeling of duct system. Through the 3-D CFD analysis, we investigated also the pressure loss and the velocity distributions of the designed whole duct system as well as the blade duct. Comparing the 3-D CFD result with 1-D analysis result, we lessened the uncertainty of the designed duct system and speculated the problem that was not concerned in design state.

  • PDF

Investigation on the wind-induced instability of long-span suspension bridges with 3D cable system

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.209-220
    • /
    • 2011
  • The cable system is generally considered to be a structural solution to increase the spanning capacity of suspension bridges. In this work, based on the Runyang Bridge over the Yangtze River, three case suspension bridges with different 3D cable systems are designed, structural dynamic characteristics, the aerostatic and aerodynamic stability are investigated numerically by 3D nonlinear aerostatic and aerodynamic analysis, and the cable system favorable to improve the wind-induced instability of long-span suspension bridges is also proposed. The results show that as compared to the example bridge with parallel cable system, the suspension bridge with inward-inclined cable system has greater lateral bending and tensional frequencies, and also better aerodynamic stability; as for the suspension bridge with outward-inclined cable system, it has less lateral bending and tensional frequencies, and but better aerostatic stability; however the suspension bridge is more prone to aerodynamic instability, and therefore considering the whole wind-induced instability, the parallel and inward-inclined cable systems are both favorable for long-span suspension bridges.

Evaluation of Volumetric Texture Features for Computerized Cell Nuclei Grading

  • Kim, Tae-Yun;Choi, Hyun-Ju;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1635-1648
    • /
    • 2008
  • The extraction of important features in cancer cell image analysis is a key process in grading renal cell carcinoma. In this study, we applied three-dimensional (3D) texture feature extraction methods to cell nuclei images and evaluated the validity of them for computerized cell nuclei grading. Individual images of 2,423 cell nuclei were extracted from 80 renal cell carcinomas (RCCs) using confocal laser scanning microscopy (CLSM). First, we applied the 3D texture mapping method to render the volume of entire tissue sections. Then, we determined the chromatin texture quantitatively by calculating 3D gray-level co-occurrence matrices (3D GLCM) and 3D run length matrices (3D GLRLM). Finally, to demonstrate the suitability of 3D texture features for grading, we performed a discriminant analysis. In addition, we conducted a principal component analysis to obtain optimized texture features. Automatic grading of cell nuclei using 3D texture features had an accuracy of 78.30%. Combining 3D textural and 3D morphological features improved the accuracy to 82.19%. As a comparative study, we also performed a stepwise feature selection. Using the 4 optimized features, we could obtain more improved accuracy of 84.32%. Three dimensional texture features have potential for use as fundamental elements in developing a new nuclear grading system with accurate diagnosis and predicting prognosis.

  • PDF

A Comparative Analysis of the Different between CLO 3D Avatar Sizing and Actual Body Measurement Shapes (CLO 3D 아바타 사이징과 실제인체간의 치수 및 형태 차이 비교 분석)

  • Lee, Min-Jeong;Sohn, Hee-Soon
    • Journal of Fashion Business
    • /
    • v.16 no.4
    • /
    • pp.137-151
    • /
    • 2012
  • This study aims to use the avatar sizing system of the 3D apparel CAD program instead of the existing 3D body scanners, and to commercialize 3D personal avatars. Towards these ends, the study examined a difference between a 3D avatar and actual body was determined to verify the 3D avatar sizing system. For the experiment, three subjects were selected, were measured as they were, and were made to undergo 3D body scanning and photographing. Then, using avatar sizing system on the 3D apparel CAD program, three types of virtual bodies, namely 3D avatars. The 3D avatar and actual body measurements were compared, and 3D avatars and 3D body-scanned shapes were likewise compared. As a result, the three types of actual bodies and their 3D avatars that were created based on the sizing system of the 3D apparel CAD program were overall similar. but, the thin body-YY type and the normal body-A type were different from their avatars. In the case of type B, who had a bulging abdomen, the 3D avatar was bigger than the actual body as measured. Also, in all body shapes, the girths around the chest, waist and abdomen were produced with exaggerated muscular amounts compared to their actual muscular amounts.

A study on Power System using 3D Graphic to visualize the actual state based on the result of HyperSim (HyperSim을 이용한 전력현상 3차원 시각화 연구)

  • Kim Gi Hyun;Park Chang Hyun;Lee Yil Hwa;Jang Gil Soo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.64-66
    • /
    • 2004
  • Due to the involvedness of power system, the analysis of power system is hard to make out. In some cases, visualized analysis results help to understand the power system effectively. In this paper, 3D graphic is used to visualize the power system, and chains of power system's changes are represented using the result of HyperSim, a real-time simulator. We represent states of each bus by changing height and colors of cylinder. The current of transmission lines and the angle of generators are represented by the size of pyramids and the drection of arrows respectively. Results of power system analysis are represented more easily and more intuitably using the visualization.

  • PDF

Study on Transient Structural Load Analysis of Aircraft Suspension Equipment (항공기용 서스펜션 장비의 천이구조하중해석에 대한 연구)

  • Cha, Jinhyun;Chung, Sangjun;Choi, Kwanho
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.3
    • /
    • pp.23-30
    • /
    • 2015
  • In this study, a transient structural load analysis system was constructed to calculate the applied load on the suspension equipment corresponding to the aircraft flight conditions based on military specifications. Aircraft flight data (altitude, velocity, acceleration, angle of attack and etc. at aircraft center of gravity) were used as input parameters and the calculated load of the suspension equipment at wings on the left and right side was printed out for the structural load analysis. As a calculation procedure, first of all, load analysis was carried out at the center of gravity of the external store, Secondly, a trial reaction force analysis was conducted on hook and swaybrace of suspension equipment. All procedure of calculations was programed to analyze the structural load automatically. To verify the numerical results, structural load analysis using the experimental flight data was performed.

Ergonomic evaluation of stereoscopic contents for a museum exhibition

  • Abe, N.;Ohta, K.;Kawai, T.;Ando, K.;Kakinuma, T.;Fujita, K.;Kudo, N.
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.159-165
    • /
    • 2011
  • This research entailed the production of stereoscopic 3D (S3D) contents using 2D-to-S3D conversion for exhibition at a museum and subjective evaluation. Hybrid production combining S3D images of existing live-action videos using the 2D-to-S3D conversion technology and computer graphic ones created via stereo rendering was conducted. Design and control of the chronological analysis of the parallactic angle was conducted on the produced contents, using binocular information as well as subjective evaluations, with the intent of conducting an investigation on the characteristics of such contents from the perspectives of the producers and viewers. An investigation was also conducted on the effects of the viewing position on the impressions of the S3D images.

Development of Three D.O.F. Alignment Stage for Vaccume Environment (진공용 3 자유도 얼라인먼트 스테이지 개발)

  • 박희재;박종호;한상진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.551-554
    • /
    • 2000
  • Alignment system is a system to locate an object to it's accurate position in multi-d.o.f space. According to process of application, it is need to align an object in 3 or 6 d.o.f. space. And alignment system is used in various environments. Especially in PDP application, alignment process is carried out in vaccume environment. In this paper, we developed 3 d.o.f. alignment system for vaccume environment, performed kinematic analysis and improved it's positional accuracy.

  • PDF

Kinematic/Inverse Kinematic Analysis of Captive Trajectory Simulation System with Functional Redundancy (기능적 여유자유도를 가지는 CTS 시스템의 기구학/역기구학 해석)

  • Lee, Do Kwan;Lee, Sang Jeong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.263-271
    • /
    • 2017
  • A captive trajectory simulation (CTS) system is used to investigate the separation behavior of the store model by moving the model to an arbitrary pose and position based on aerodynamic data. A CTS system operated inside a wind tunnel is designed to match the structure of the wind tunnel facility. As a result, each CTS system has different kinematic structure, and inverse kinematic analysis of the system is necessary. In this study, kinematic/inverse kinematic analysis for the CTS system with functional redundancy is performed. Inverse kinematic analysis with combined numerical and analytical approach is especially proposed. The suggested approach utilizes the redundancy to improve the safety of the system, and has advantages in real time analysis.

Finite Element Analysis of a Customized Eyeglass Frame Fabricated by 3D Printing (3 차원 프린팅으로 제작된 개인맞춤형 안경테의 유한요소해석)

  • Lee, Ji-Eun;Im, Young-Eun;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.65-71
    • /
    • 2016
  • In recent years, 3D printing has received increasing attention due to releases of low-cost 3D printers based on open-source platform. 3D printing is expected to reduce the barrier to entry in the traditional manufacturing processes by increasing flexibility and creating an advantage to manufacture customized products at low costs. In this study, a unique eyeglass frame was designed to have a snake shape, which has an asymmetric geometry unlike traditional frames. The eyeglass frame was designed in a customized manner by reflecting dimensional characteristics of a customer's face. Finite element analysis was performed to investigate the structural safety of the 3D printed frames during the assembly process. The analysis also considered the effect of anisotropic material properties as determined by tensile tests. The eyeglass frame was then printed using the customized sizes and the best building process. The eyeglass frame was successfully assembled with lenses and without structural failure during its assembly procedure.