• Title/Summary/Keyword: 3D Analysis System

Search Result 3,989, Processing Time 0.032 seconds

Worker utilization and productivity analysis using a 3D modeling technique (3D 모델링 기법을 이용한 작업자효율 및 생산성 분석)

  • 이수철;서승록;윤영수;양승렬
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1999.12a
    • /
    • pp.759-768
    • /
    • 1999
  • In this paper, we developed a simulation model of a car parts assembly line to improve the system performance such as worker's utilization balancing, productivity. This simulation model has been developed using QUEST, a true 3D discrete event simulation pakcage that is designed for modeling and analysis of manufacturing systems. We have suggested the results obtained to improve the system performances of an existing production line.

  • PDF

Calculation of Electrodynamic Repulsion Force in Molded Case Circuit Breakers Using the 3-D Finite Element Analysis (3차원 유한요소 해석을 이용한 배선용 차단기의 전자반발력 계산)

  • Kim, Yong-Gi;Park, Hong-Tae;Song, Jung-Chun;Seo, Jung-Min;Degui, Chen
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.137-140
    • /
    • 2003
  • To the optimization design of molded case circuit breakers(MCCBs), it is necessary and important to calculate the electro-dynamic repulsion force acting on the movable conductor. With 3-D finite element nonlinear analysis, according to the equations among current-magnetic field-repulsion force and taking into account the ferromagnet, contact bridge model is introduced to simulate the current constriction between contacts, so Lorentz and Holm force acting on the movable conductor and contact, respectively, can be integrated to calculate. Coupled with circuit equations, the opening time of movable contact also can be obtained using iteration with the restriction of contact force. Simulation and experiment for repulsion forte and opening time of five different configuration models have been investigated. The results indicate that the proposed method is effective and capable of evaluating new design of contact systems in MCCBs.

  • PDF

Analysis of the Optimized 3D Depth of Integral Imaging (집적영상 방식 3D 디스플레이의 최적 입체감에 관한 분석)

  • Choi, Hee-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.1
    • /
    • pp.32-35
    • /
    • 2012
  • In this paper, an analysis of the optimized 3D depth of integral imaging is proposed. We achieve this by calculating the amount of image distortion and considering the threshold of recognition in the human visual system. Experimental results are also provided to test the theory.

The Analysis of View and Daylights for the Design of Public Housing Complexes Using a Residential Environment Analysis System Integrated into a CAD System (주거환경분석시스템의 CAD 시스템 통합을 통한 공동주택단지설계 시 일조 및 조망분석에 관한 연구)

  • Park, Soo-Hoon;Ryu, Jeong-Won
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.2
    • /
    • pp.137-145
    • /
    • 2007
  • This paper concerns about residential environment analysis program implementation for design and analysis on public housing complexes such that view and daylight analysis processes are automated and integrated into existing design routine to achieve better design efficiency. Considering the architectural design trends this paper chooses ArchiCAD as a platform for a CAD system, which contains the concepts such as integrated object-oriented CAD, virtual building and BIM. Residential environment analysis system consists of three components. The first component is the 3D modeling part defining 3D form information for external geographic contour models, site models and interior/exterior of apartment buildings. The second is the parametric library part handling the design parameters for view and daylight analysis. The last is the user interface for the input/output and integration of data for the environment analysis. Daylight analysis shows rendered images as well as results of daylight reports and grades per time and performs the calculations for floor shadow. It separates the site-only analysis from the analysis of site and exterior environmental parameters. View analysis considers horizontal and vertical view angles to produce view image from each unit and uses the bitmap analysis method to determine opening ratio, scenery ratio and void ratio. We could expect better performance and precision from this residential environment analysis system than the existing 2D drawing based view and daylight analysis methods and overcome the existing one-way flow of design information from 3D form to analysis reports so that site design modifications are automatically reflected on analysis results. Each part is developed in a module so that further integration and extension into other related estimation and construction management systems are made possible.

Finite Element Analysis for Electron Optical System of a Thermionic SEM (열전자방사형 주사전자 현미경 전자광학계의 유한요소해석)

  • Park, Keun;Jung, Huen-U.;Kim, Dong-Hwan;Jang, Dong-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1288-1293
    • /
    • 2007
  • The present study covers the design and analysis of a thermionic scanning electron microscope (SEM) column. The SEM column contains an electron optical system in which electrons are emitted and moved to form a focused beam, and this generates secondary electrons from the specimen surfaces, eventually making an image. The electron optical system mainly consists of a thermionic electron gun as the beam source, the lens system, the electron control unit, and the vacuum unit. In the design process, the dimension and capacity of the SEM components need to be optimally determined with the aid of finite element analyses. Considering the geometry of the filament, a three-dimensional (3D) finite element analysis is utilized. Through the analysis, the beam emission characteristics and relevant trajectories are predicted from which a systematic design of the electron optical system is enabled. The validity of the proposed 3D analysis is also discussed by comparing the directional beam spot radius. As a result, a prototype of a thermionic SEM is successfully developed with a relatively short time and low investment costs, which proves the adoptability of the proposed 3D analysis.

  • PDF

THERMAL-FLUID ANALYSIS FOR COOLING PERFORMANCE IMPROVEMENT OF 3.3KV(105A) COMPACT RACK TYPE MEDIUM VOLTAGE INVERTER SYSTEM (3.3kV(105A) COMPACT RACK TYPE 고압 인버터 시스템의 방열 성능 향상을 위한 열유동 해석)

  • Kim, S.Y.;Kim, S.D.;Ryoo, S.R.;You, N.K.;Kim, T.B.;Hong, C.O.;Ko, H.S.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.24-28
    • /
    • 2014
  • With ever rising concerns about saving of fossil fuel resource, there have been an increasing demand for use of energy more efficiently. The electric motor driven inverters can be a great help to improve energy efficiency. They are also used to control the motor speed to the actual need. Therefore the use of them can lead to reduce energy consumption. In particular, the medium voltage(MV) drive systems used for pumps, fans, steel rolling mills and tractions have widespread applications in the industry. They cover power ratings from 0.4MW to 40MW at the MV level of 2.3kV to 13.8kV. The majority of the installed MV drive systems however, are in the 1MW to 4MW range with voltage rating from 3.3kV to 6.6kV. But they are required to reduce size and weight like other power electronic equipments. In this paper, we studied on the 3.3kV(105A) compact rack type inverter system for improving the cooling efficiency. At first, we confirmed the tendency of temperature with computational simulation using ANSYS ICEPAK and actual experimental tests. And then we researched thermal performance improvement designs in order to reduce temperature of the transformer for the safe operation. It can reduce temperature of transformer that using pipe type flow guide in the system. As a result, we found out more efficient solution by thermal-fluid analysis.

Development of the Optimization Analysis Technology for the Combustion System of a HSDI Diesel Engine (HSDI 디젤엔진의 연소계 최적화 해석기술 개발)

  • Lee Je-Hyung;Lee Joon-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.153-158
    • /
    • 2006
  • To optimize the combustion system in a HSDI diesel engine, a new analysis technology was developed. The in-cylinder 3-D combustion analysis was carried out by the modified KIVA-3V, and the spray characteristics for the high pressure injection system were analyzed by HYDSIM. The combustion design parameters were optimized by coupling the KIVA-3V and the iSIGHT. The optimization procedure consists of 3 steps. The $1^{st}$ step is the sampling method by the Design of Experiment(DOE), the $2^{nd}$ step is the approximation using the Neural Network method, and the $3^{rd}$ step is the optimization using the Genetic Algorithm. The developed procedures have been approved as very effective and reliable, and the computational results agree well with the experimental data. The analysis results show that the optimized combustion system in a HSDI diesel engine is capable of reducing NOx and Soot emissions simultaneously keeping a same level of the fuel consumption(BSFC).

The Thermal Elasto-plastic Analysis Using Layered Shell Element (적층 쉘 요소를 이용한 용접 열탄소성 해석)

  • Song, H.C.;Yum, J.S.;Jang, C.D.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.220-224
    • /
    • 2005
  • The thermal elasto-plastic analysis for the prediction of welding distortion of a 3 dimensional large-scaled ship structure is a very time-consuming work since the analysis is a nonlinear problem, and a lot of finite elements are needed to simulate the large ship hull block. Generally, 3-D finite elements have been used in the 3-D welding distortion problem to assess precisely the temperature gradient through the thickness direction of the welding plate. As a result of the adoption of 3-D element, degrees of freedom are rapidly increased in the problem to be solved. In this study, to improve the time efficiency of welding thermal elasto-plastic analysis, a layered shell element was proposed to simulate 3-D temperature gradient, and the results were compared with the experiment. The experiments were carried out for the type of bead-on-plate welding, and we found the measured data have a good agreement with the FEA results.

  • PDF

A Study on 4D CAD and GIS Integrated System for Process Risk Management Model (4D CAD와 GIS의 통합시스템을 통한 프로젝트 단계별 리스크관리 모델에 관한 연구)

  • Jeon, Seung-Ho;Yun, Seok-Heon;Paek, Joon-Hong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.3
    • /
    • pp.91-98
    • /
    • 2007
  • Recently a construction industry introduces information that brings about many advantages in the early planning phase, design phase and construction phase. Especially it replaces 2D, 3D systems(usually using explanation of drawing information) ai 4D CAD(offering a sort of 4D-having relation of construction schedule and 3D drawing information). Nevertheless a 4D has these benefits, it has limits which are not only usually using 3D modeling but also limit of making full use of practical affairs because of a lack of connecting varietals of progress of work. To solve these uppermost limits, this research is presenting unified systems to use in risk management which are efficient management of space and non-space information, space analysis, making full use of data base, introducing GIS system of easy interaction.

Development of 3-D Stereo PIV (3차원 스테레오 PIV 개발)

  • Kim Mi-Young;Choi Jang-Woon;Nam Koo-Man;Lee Young-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.19-22
    • /
    • 2002
  • A process of 3-D particle image velocimetry, called here, as '3-D stereo PIV' was developed for the measurement of a section field of 3-D complex flows. The present method includes modeling of camera by a calibrator based on the homogeneous coordinate system, transfromation of oblique-angled image to transformed image, identification of 2-D velocity vectors by 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system and finally 3-D animation as the post processing. In principle, as two frame images only are necessary for the single instantaneous analysis of a section field of 3-D flow, more effective vectors are obtainable contrary to the previous multi-frame vector algorithm. An experimental system was also used for the application of the proposed method. Three analog CCD cameras and an Argon-Ion Laser(300mW) for illumination were adopted to capture the wake flow behind a bluff obstacle.

  • PDF