• 제목/요약/키워드: 3D 포인트 클라우드

검색결과 164건 처리시간 0.025초

역 변환과 뎁스 기반의 포인트 클라우드 렌더링 품질 향상 방법 (Rendering Quality Improvement Method based on Inverse Warping and Depth)

  • 이희제;윤준영;박종일
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.85-88
    • /
    • 2021
  • 포인트 클라우드 콘텐츠는 실제 환경 및 물체를 3 차원 위치정보를 갖는 점들과 그에 대응하는 색상 등을 획득하여 기록한 실감 콘텐츠이다. 위치와 색상 정보로만 이뤄진 3 차원 점으로 이뤄진 포인트 클라우드 콘텐츠는 확대하여 렌더링 할 경우 점과 점 사이의 간격이 벌어지면서 발생하는 구멍에 의해 콘텐츠 품질이 저하될 수 있다. 이러한 문제를 해결하기 위해 본 논문에서는 포인트 클라우드 확대 시 점들 간 간격이 벌어져 생기는 구멍에 대해 깊이정보를 활용한 역변환 기반 보간 방법을 통해 포인트 클라우드 콘텐츠 품질을 개선하는 방법을 제안한다. 벌어진 간격들 사이에서 빈 공간을 찾을 때 그 사이로 뒷면의 점들이 그려지게 되어 보간 방법을 적용하는데 방해요소로 작용한다. 이를 해결하기 위해 구멍이 발생하지 않은 시점에서 렌더링 된 영상을 사용하여 포인트 클라우드의 뒷면에 해당되는 점들을 제거한다. 다음으로 깊이 맵(depth map)을 추출한 후 추출된 깊이 값을 사용하여 뎁스 에지(depth edge)를 구하고 에지를 사용하여 깊이 불연속 부분에 대해 처리한다. 마지막으로 뎁스 값을 활용하여 이전에 찾은 구멍들의 역변환을 하여 원본의 데이터에서 픽셀을 추출한다. 제안하는 방법으로 콘텐츠를 렌더링 한 결과, 기존의 크기를 늘려 빈 영역을 채우는 방법에 비해 렌더링 품질이 평균 PSNR 측면에서 2.9 dB 향상된 결과를 보였다.

  • PDF

수정된 가중치를 이용한 효율적 Mesh Reconstruction (Efficient Mesh Reconstruction Based on Modified Weight Factor)

  • 정우경;한종기
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.1275-1277
    • /
    • 2022
  • Structure-from-Motion(SfM), Multi-view Stereo(MVS)이 이용되는 3D Reconstruction 과정에서 생성된 3D 포인트 클라우드는 RGB 영상에 기반하여 생성되므로 실제 객체 혹은 Scene 과 달리 point 와 point 간에 존재하는 빈 공간이 발생한다. 이를 개선하기 위하여 3D 포인트 클라우드를 이용하여 3D Mesh 를 복원하는 Mesh Reconstruction 과정을 거치게 된다. 본 논문에서는 Mesh Reconstruction 과정에서 자유공간 지지도에 기반해 수정한 가중치를 이용하는 효율적인 방법을 제안한다. 실험을 통하여 제안한 알고리즘을 이용한 복원 결과가 기존보다 개선됨을 보인다.

  • PDF

주성분 분석을 통한 포인트 클라우드 굽은 실린더 형태 매칭 (Matching for the Elbow Cylinder Shape in the Point Cloud Using the PCA)

  • 진영훈
    • 정보과학회 논문지
    • /
    • 제44권4호
    • /
    • pp.392-398
    • /
    • 2017
  • 포인트 클라우드를 이용한 물체의 표현은 레이저 스캐너를 통해 공간을 스캔하여 점의 집합을 추출하고, 정합(Registration)을 통해 하나의 좌표계로 통합하는 과정을 거쳐 이루어진다. 정합이 완료된 포인트 클라우드 집합은 수학적 해석을 통해 의미 있는 영역, 형태, 잡음 등으로 분류되어 쓰이게 된다. 본 논문은 3차원 포인트 클라우드 데이터에서 실린더 형태의 굽은 영역 매칭을 목표로 한다. 매칭 절차는 포인트 클라우드에서 RANdom SAmple Consensus(RANSAC)을 통한 구(sphere) 적합(fitting)으로 실린더 형태의 점 후보군을 추출하여 중심과 반지름 데이터를 얻고, 추출된 중심점 데이터에서 주성분 분석(Principal Component Analysis)을 통해 굽은 영역인지 판별한 후 캣멀롬 스플라인(Catmull-Rom spline)으로 굽은 영역 매칭을 완료한다. 제안된 방법은 제약조건 및 분할 없이 중심축 추정에 이은 직선 및 굽은 형태의 실린더 추정으로 비교적 빠른 추정결과를 도출하고, 역설계의 작업효율을 높일 수 있을 것으로 기대된다.

V-PCC 를 위한 Occupancy 정보 기반의 Texture 영상 부호화 방법 (Texture video coding based on Occupancy information in V-PCC)

  • 권대혁;최해철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.151-153
    • /
    • 2021
  • 포인트 클라우드는 특정 개체 혹은 장면을 다수의 3 차원 포인터를 사용하여 표현하는 데이터의 표현 방식 중 하나로 3D 데이터를 정밀하게 수집하고 표현할 수 있는 방법이다. 하지만 방대한 양의 데이터를 필요로 하기 때문에 효율적인 압축이 필수적이다. 이에 따라 국제 표준화 단체인 Moving Picture Experts Group 에서는 포인트 클라우드 데이터의 효율적인 압축 방법 중 하나로 Video based Point Cloud Compression(V-PCC)에 대한 표준을 제정하였다. V-PCC 는 포인트 클라우드 정보를 Occupancy, Geometry, Texture 와 같은 다수의 2D 영상으로 변환하고 각 2D 영상을 전통적인 2D 비디오 코덱을 활용하여 압축하는 방법이다. 본 논문에서는 V-PCC 에서 변환하는 Occupancy 의 정보를 활용하여 효율적으로 Texture 영상을 압축할 수 있은 방법을 소개한다. 또한 제안방법이 V-PCC 에서 약 1%의 부호화 효율을 얻을 수 있음을 보인다.

  • PDF

3차원 포인트클라우드 기반 단면 정보 추출 기술 개발 (A Study on Cross-section Extraction Method based on 3D Point Cloud Data)

  • 김회민;전성국;김운용;윤정록
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.277-278
    • /
    • 2022
  • 본 연구는 3차원 포인트클라우드로부터 단면 정보를 자동으로 추출할 수 있는 알고리즘에 관한 것이다. 3차원 스캐너로부터 획득한 포인트클라우드 데이터는 다양한 제조 공정의 결과물인 산업 제품의 접합 상태를 파악하는데 자주 사용된다. 하지만 많은 노이즈를 포함하는 포인트클라우드 데이터로부터 제조 상태에 대한 수치적인 결과를 반복적으로 획득하기에는 많은 비용이 수반된다. 따라서 본 연구는 산업 제품의 접합부에 대한 포인트클라우드로부터 단면 정보를 자동으로 추출할 수 있는 알고리즘을 소개하고자 한다.

포인트 클라우드 형태의 인터랙티브 홀로그램 콘텐츠 (Point Cloud Content in Form of Interactive Holograms)

  • 김동현;김상욱
    • 한국콘텐츠학회논문지
    • /
    • 제12권9호
    • /
    • pp.40-47
    • /
    • 2012
  • 미디어 아트는 새로운 경로의 인식과 지각을 동반하고, 기존의 미술과는 다른 인간의 신체를 도구화 하여 상호작용을 만들어내는 새로운 감상방식을 제안한다. 시각적인 영상을 제작하는 방식 중 포인트 클라우드는 점으로 형태를 표현한다는 점에 있어 서양미술의 점묘법과 유사하며 이는 전통회화 기법을 디지털 기술을 활용해 재구성한다는 의미를 가진다. 본 논문에서는 미학적 요소와 디지털 기술을 융합한 새로운 감상방식으로 포인트 클라우드 형태의 영상을 제작하여 홀로그램 필름에 투사하고, 관람자의 손짓이 영상과 상호작용하는 콘텐츠를 제시한다. 콘텐츠 제작은 콘텐츠 제작 배경 의도를 기획하고 포인트 클라우드 형태의 이미지 제작, 상호작용을 위한 3D 제스처 디자인 과정을 거쳐 최종적으로 홀로그램 필름에 투사하는 과정을 거친다. 콘텐츠는 사람의 의식 속에서 일어나는 기억의 회상 과정을 시각적, 체감적으로 표현한다. 이를 위해 기억의 회상 과정을 불확실한 기억, 기억의 구체화, 완전한 회상으로 설정하였다. 불확실한 기억은 포인트 클라우드 형태의 이미지를 통해 모호한 형태의 이미지로 표현되고, 상호작용으로 이미지를 조작하는 행위를 통해 기억을 구체화 해 나가면서 완전한 회상을 하게 된다.

포인트 클라우드 파일의 측점 재배치를 통한 파일 참조 옥트리의 성능 향상 (Improving Performance of File-referring Octree Based on Point Reallocation of Point Cloud File)

  • 한수희
    • 한국측량학회지
    • /
    • 제33권5호
    • /
    • pp.437-442
    • /
    • 2015
  • 최근 3차원 지상 레이저 스캐너의 성능이 고도로 향상됨에 따라 취득된 측점들로 구성된 포인트 클라우드의 용량도 급격히 증가하고 있다. 본 연구는 3차원 지상 레이저 스캐너로부터 취득한 대용량 포인트 클라우드로부터 옥트리를 생성하고 측점을 질의하기 위한 선행 연구의 파일 참조 옥트리 방식을 개선하는 것을 목표로 한다. 이를 위하여 메인 메모리에 구현된 옥트리의 리프 노드에는 첫 번째 측점의 파일 포인터만을 저장하였다. 아울러 동일한 리프 노드에 속하는 측점들이 연속적으로 기록되도록 포인트 클라우드 파일을 재구성하였다. 약 3억 개의 측점으로 구성된 포인트 클라우드로부터 옥트리를 생성하고 일련의 측점 주위로 일정 반경 안에 존재하는 측점들에 대한 질의 시간을 측정하였다. 결과적으로 옥트리의 생성 시간, 저장과 복원 시간, 질의 시간 및 메모리 사용량 등 모든 면에서 제안한 방식이 기존 방식에 비하여 향상된 성능을 나타내었다. 특히 질의 속도는 2배 이상, 메모리 효율성은 4배 이상 증가하였다. 따라서 본 연구는 선행 연구의 방식을 명백히 향상시켰다고 판단할 수 있다. 아울러 메인 메모리의 크기를 크게 상회하는 초대용량 포인트 클라우드로부터 옥트리를 구성하고 측점을 질의하는 것이 가능할 것으로 판단된다.

대용량 3차원 포인트 클라우드를 위한 파일참조 옥트리의 구현 (Implementation of File-referring Octree for Huge 3D Point Clouds)

  • 한수희
    • 한국측량학회지
    • /
    • 제32권2호
    • /
    • pp.109-115
    • /
    • 2014
  • 본 연구에서는 Han(2013)이 제안한 메모리 효율적인 옥트리를 기반으로 메인 메모리의 크기에 근접하거나 초과하는 3차원 포인트 클라우드로부터 옥트리를 생성하고 3차원 포인트를 탐색하기 위한 방법론을 제시하고자 한다. 이를 위하여 3차원 포인트 클라우드를 메인 메모리에 저장하여 참조하는 방법 대신 하드디스크의 파일을 직접적으로 참조하는 방법을 제안하였다. 아울러 메인 메모리에 구현된 옥트리를 파일로 저장하고 복원함으로써 옥트리 재현 시간을 줄이는 방법을 제안하였다. 메모리참조 방식과 제안된 파일참조 방식을 실제 터널에서 취득한 1800만 개의 3차원 포인트로 구성된 자료와 3억 개로 구성된 자료에 적용하였다. 결과로 옥트리 생성 및 3차원 포인트 탐색시 1800만 개로 구성된 자료에 대해서는 메모리참조 방식이 파일참조 방식보다 월등히 빠른 속도를 나타내었다. 3억 개로 구성된 자료에 대해서는 메모리참조 방식으로는 옥트리를 생성할 수 없는 반면 파일참조 방식으로는 옥트리 생성 및 3차원 포인트 탐색이 가능하였다. 최적의 탐색 속도를 위한 목표 단계의 옥트리는 생성할 수 없었지만 3억 개가 넘는 3차원 포인트를 탐색할 수 있다는데 의미를 둘 수 있다. 아울러 옥트리를 재현하기 위해 소요되는 시간은 옥트리를 생성하기 위한 시간의 3% 내외로서 제안된 방식이 매우 효율적임을 확인할 수 있었다.

대용량 포인트 클라우드 기반 파이프 형상 역설계 자동화 방법 연구 (Large Point Cloud-based Pipe Shape Reverse Engineering Automation Method)

  • 강태욱;김지은
    • 한국산학기술학회논문지
    • /
    • 제17권3호
    • /
    • pp.692-698
    • /
    • 2016
  • 최근 신규 시설물 건설이 줄어들고 기존 시설물에 대한 확장공사 및 유지보수가 시설물 관리에 있어서 갈수록 큰 비중을 차지하고 있다. 이런 배경에서, 건축에서 가장 큰 관리 및 운영비용을 차지하고 있는 MEP(Mechanical Electrical and Plumbing) 설비에 대한 역설계 연구 필요성이 높아지고 있다. 연구의 목적은 대용량 MEP 포인트 클라우드의 파이프 배관 형상에 대한 역설계 자동화 방법을 제시하는 것이다. 이를 위해, 관련 연구를 조사하고, 대용량 포인트 클라우드를 고려한 형상 역설계 자동화 방법을 제안한다. 이를 바탕으로, 프로토타입을 개발하고, 결과를 검증하였으며, 3차원 대용량 포인트 클라우드 데이터 검색 등과 관련된 렌더링 성능을 측정하였다. 포인트 클라우드 샘플들을 준비해 검증한 결과, 제안된 방법에서 렌더링 성능 표준편차는 0.004로 차이가 적어, 대용량 데이터 처리에 적합함을 알 수 있다.

지상라이다기반 실내 3차원 모델 구축 방안 (Indoor 3D Modeling Approach based on Terrestrial LiDAR)

  • 홍성철;박일석;허준;최현상
    • 대한토목학회논문집
    • /
    • 제32권5D호
    • /
    • pp.527-532
    • /
    • 2012
  • 지상라이다는 시간과 인력의 소모를 절감하면서도 고밀도의 포인트 클라우드를 생성할 수 있으므로 3차원 지적, 문화재보호, 건설관리 등에 활용되고 있다. 본 연구에서는 포인트 클라우드를 기반으로 한 실내 3차원 모델 구축 기법을 제시하였다. 제시한 방안은 세그먼테이션 단계와 외곽선 추출 단계로 이루어진다. 세그먼테이션 단계에서는 RANSAC과 정제격자를 이용하여 포인트 클라우드를 동일 평면에 따라 분할한다. 외곽선 추출단계에서는 외곽선 추출 격자를 이용하여 3차원 모델의 경계선을 추출한다. 또한 모델링에 사용되지 않은 포인트들을 메쉬자료화여 실내 공간의 세부 묘사를 위한 자료로 활용하였다. 제시한 모델링 기법은 메쉬자료를 이용하여 3차원 모델 구축을 하던 작업과정을 크게 개선하였다. 하지만 실내 공간의 환경 특성에 따라 RANSAC 경계값, 정제격자와 외곽선 추출 격자 크기의 조정이 필요하며 원형 또한 곡선 형태를 지닌 실내 구조물의 외곽선 추출을 위한 알고리즘의 개선이 필요하다.