• Title/Summary/Keyword: 3D 잡음 제거

Search Result 168, Processing Time 0.023 seconds

Implementation of Spatio-Temporal 3-D Joint Noise Reducer (시공간 3차원 결합 잡음제거 필터의 구현)

  • 홍성환;김희순;최종섭;이광욱;노형호;홍성훈
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.557-560
    • /
    • 2001
  • 본 논문에서는 시공간 3차원 잡음 제거기의 ASIC 설계 및 구현결과를 소개한다. 구현된 잡음 제거기는 휘도와 색차신호에 대한 잡음제거 필터들로 구성된다. 휘도에 적용한 필터는 A-MEAN 필터와 A-LMMSE 필터를 결합한 형태의 필터를 시공간적으로 연결한 필터로써, 특히 시간방향으로 IIR 필터 형태를 갖도록 설계하여 평탄한 영상영역에서 보다 강한 잡음 제거 효과를 갖도록 하였다. 한편, 색차신호에 대해서는 5탭 길이를 갖는 1차원 A-MEAN 필터를 적용하였다. C-언어를 이용한 시뮬레이션을 통해 설계된 잡음 제거기의 성능을 평가하였고, VHDL과 C-언어에 의한 시뮬레이션 결과를 비교하여 VHDL-코드의 검증을 수행했다. 구현과정은 시뮬레이션과 논리합성 등 전반부 설계를 Synopsys 툴을 이용하여 수행했고, 레이아웃 등 후반부 설계를 Cadence 툴과 Apollo 툴을 이용하여 수행했다.

  • PDF

A Study on 2D/3D image Conversion Method using Optical flow of Level Simplified and Noise Reduction (Optical flow의 레벨 간소화와 잡음제거를 이용한 2D/3D 변환기법 연구)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Eun, Jong-Won;Kim, Jin-Soo;Lee, Sang-Hun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.441-444
    • /
    • 2011
  • 본 논문은 2D/3D 영상 처리에서 깊이지도 생성을 위한 Optical flow에서 레벨을 간소화하여 연산량을 감소시키고 객체의 고유벡터를 이용하여 영상의 잡음을 제거하는 연구이다. Optical flow는 움직임추정 알고리즘의 하나로 두 프레임간의 픽셀의 변화 벡터 값을 나타내며 블록 매칭과 같은 알고리즘에 비해 정확도가 높다. 그러나 기존의 Optical flow는 긴 연산 시간과 카메라의 이동이나 조명의 변화에 민감한 문제가 있다. 이를 해결하기 위해 연산 시간의 단축을 위한 레벨 간소화 과정을 거치고 영상에서 고유벡터를 갖는 영역에 한해 Optical flow를 적용하여 잡음을 제거하는 방법을 제안하였다. 제안한 방법으로 2차원 영상을 3차원 입체 영상으로 변환하였고 SSIM(Structural SIMilarity Index)으로 최종 생성된 영상의 오차율을 분석하였다.

  • PDF

Acoustic Feedback and Noise Cancellation of Hearing Aids by Deep Learning Algorithm (심층학습 알고리즘을 이용한 보청기의 음향궤환 및 잡음 제거)

  • Lee, Haeng-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1249-1256
    • /
    • 2019
  • In this paper, we propose a new algorithm to remove acoustic feedback and noise in hearing aids. Instead of using the conventional FIR structure, this algorithm is a deep learning algorithm using neural network adaptive prediction filter to improve the feedback and noise reduction performance. The feedback canceller first removes the feedback signal from the microphone signal and then removes the noise using the Wiener filter technique. Noise elimination is to estimate the speech from the speech signal containing noise using the linear prediction model according to the periodicity of the speech signal. In order to ensure stable convergence of two adaptive systems in a loop, coefficient updates of the feedback canceller and noise canceller are separated and converged using the residual error signal generated after the cancellation. In order to verify the performance of the feedback and noise canceller proposed in this study, a simulation program was written and simulated. Experimental results show that the proposed deep learning algorithm improves the signal to feedback ratio(: SFR) of about 10 dB in the feedback canceller and the signal to noise ratio enhancement(: SNRE) of about 3 dB in the noise canceller than the conventional FIR structure.

Mixed Noise Removal using Histogram and Pixel Information of Local Mask (히스토그램 및 국부 마스크의 화소 정보를 이용한 복합잡음 제거)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.647-653
    • /
    • 2016
  • Recently, the data image processing has been applied to a variety of fields including broadcasting, communication, computer graphics, medicine, and so on. Generally, the image data may develop the noise during their transmission. Therefore, the studies have been actively conducted to remove the noise on the image. There are diverse types of noise on the image including salt and pepper noise, AWGN, and mixed noise. Hence, the filter algorithm for the image recovery was proposed that salt and pepper noise was processed by histogram and spatial weighted values after defining the noise to lessen the impact of mixed noise added in the image, and AWGN was processed by the pixel information of local mask establishing the weighted values in this study. Regarding the processed results by applying Lena images which were corrupted by salt and pepper noise(P=50%) and AWGN(${\sigma}=10$), suggested algorithm showed the improvement by 7.06[dB], 10.90[dB], 5.97[dB] respectively compared with the existing CWMF, A-TMF, AWMF.

An Iterative Weighted Mean Filter for Mixed Noise Reduction (복합 잡음 저감을 위한 반복 가중 평균 필터)

  • Lee, Jung-Moon
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.175-182
    • /
    • 2017
  • Noises are usually generated by various external causes and low quality devices in image data acquisition and recording as well as by channel interference in image transmission. Since these noise signals result in the loss of information, subsequent image processing is subject to the corruption of the original image. In general, image processing is performed in the mixed noise environment where common types of noise, known to be Gaussian and impulse, are present. This study proposes an iterative weighted mean filter for reducing mixed type of noise. Impulse noise pixels are first turned off in the input image, then $3{\times}3$ sliding window regions are processed by replacing center pixel with the result of weighted mean mask operation. This filtering processes are iterated until all the impulse noise pixels are replaced. Applied to images corrupted by Gaussian noise with ${\sigma}=10$ and different levels of impulse noise, the proposed filtering method improved the PSNR by up to 12.98 dB, 1.97 dB, 1.97 dB respectively, compared to SAWF, AWMF, MMF when impulse noise desities are less than 60%.

Bayesian Image Denoising with Mixed Prior Using Hypothesis-Testing Problem (가설-검증 문제를 이용한 혼합 프라이어를 가지는 베이지안 영상 잡음 제거)

  • Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.34-42
    • /
    • 2006
  • In general, almost information is stored in only a few wavelet coefficients. This sparse characteristic of wavelet coefficient can be modeled by the mixture of Gaussian probability density function and point mass at zero, and denoising for this prior model is peformed by using Bayesian estimation. In this paper, we propose a method of parameter estimation for denoising using hypothesis-testing problem. Hypothesis-testing problem is applied to variance of wavelet coefficient, and $X^2$-test is used. Simulation results show our method outperforms about 0.3dB higher PSNR(peak signal-to-noise ratio) gains compared to the states-of-art denoising methods when using orthogonal wavelets.

A Denoising Method for the Transient Response Signal (과도응답신호의 잡음제거기법)

  • Ho-Il Ahn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.117-122
    • /
    • 2001
  • The shock test of shipboard equipments is performed for the evaluation of the shock-resistant. capability by analyzing the maximum acceleration, the effective time duration and the shock response spectrum, etc. But some measured signals have impulsive noise and gaussian white noise because of the ambient noise, the acquisition equipment error and the transient movement of cables during the shock test. The improved transient signal analysis method which removes the noise of measured signal using the threshold policy of the median filter and the orthogonal wavelet coefficients is proposed. It was verified that the signal-to-noise ratio was improved about 30dB by the numerical simulation. And the shock response spectrum was extracted using the denoised shock response signal which was applied by this proposed method.

  • PDF

Echo Noise Robust HMM Learning Model using Average Estimator LMS Algorithm (평균 예측 LMS 알고리즘을 이용한 반향 잡음에 강인한 HMM 학습 모델)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.277-282
    • /
    • 2012
  • The speech recognition system can not quickly adapt to varied environmental noise factors that degrade the performance of recognition. In this paper, the echo noise robust HMM learning model using average estimator LMS algorithm is proposed. To be able to adapt to the changing echo noise HMM learning model consists of the recognition performance is evaluated. As a results, SNR of speech obtained by removing Changing environment noise is improved as average 3.1dB, recognition rate improved as 3.9%.

Image Denoising of Human Visual Filter Using GCST (GCST를 이용한 인간시각필터의 영상 잡음 제거)

  • Lee, Juck-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.4
    • /
    • pp.253-260
    • /
    • 2008
  • Image denoising as one of image enhancement methods has been studied a lot in the spatial and transform domain filtering. Recently wavelet transform which has an excellent energy compaction and a property of multiresolution has widely used for image denoising. But a transform based on human visual system is visually useful if an end user is human beings. Therefore, Gabor cosine and sine transform which is considered as human visual filter is applied to image denoising areas in this paper. Denoising performance of the proposed transform is compared with those of the derivatives of Gaussian transform being another human visual filter and of discrete wavelet transform in terms of PSNR. With three levels of various noises, experimental results for real images show that the proposed transform has better PSNR performance of 0.41dB than DWT and 0.14dB than DGT.

  • PDF

3D Adaptive Bilateral Filter for Ultrasound Volume Rendering (초음파 볼륨 렌더링을 위한 3차원 양방향 적응 필터)

  • Kim, Min-Su;Kwon, Koojoo;Shin, Byeoung-Seok
    • Journal of Korea Game Society
    • /
    • v.15 no.2
    • /
    • pp.159-168
    • /
    • 2015
  • This paper introduces effective noise removal method for medical ultrasound volume data. Ultrasound volume data need to be filtered because it has a lot of noise. Conventional 2d filtering methods ignore information of adjacent layers and conventional 3d filtering methods are slow or have simple filter that are not efficient for removing noise and also don't equally operate filtering because that don't take into account ultrasound' sampling character. To solve this problem, we introduce method that fast perform in parallel bilateral filtering that is known as good for noise removal and adjust proportionally window size depending on that's position. Experiments compare noise removal and loss of original data among average filtered or biliteral filtered or adaptive biliteral filtered ultrasound volume rendering images. In this way, we can more efficiently and correctly remove noise of ultrasound volume data.