Browse > Article

Bayesian Image Denoising with Mixed Prior Using Hypothesis-Testing Problem  

Eom Il-Kyu (Dept. of Electronics Engineering, Research Institute of Computer, Information and Communication)
Kim Yoo-Shin (Dept. of Electronics Engineering, Pusan National University)
Publication Information
Abstract
In general, almost information is stored in only a few wavelet coefficients. This sparse characteristic of wavelet coefficient can be modeled by the mixture of Gaussian probability density function and point mass at zero, and denoising for this prior model is peformed by using Bayesian estimation. In this paper, we propose a method of parameter estimation for denoising using hypothesis-testing problem. Hypothesis-testing problem is applied to variance of wavelet coefficient, and $X^2$-test is used. Simulation results show our method outperforms about 0.3dB higher PSNR(peak signal-to-noise ratio) gains compared to the states-of-art denoising methods when using orthogonal wavelets.
Keywords
혼합 프라이어 모델;웨이블릿;베이지안 추정법;잡음 제거;가설-검증 문제;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. H. Adelson, E. Simoncelli, and R. Hingorani, 'Orthogonal pyramid transforms for image coding,' Proc. SPIE, vol.845, pp.50-58, 1987
2 E. J. Dudewicz, and S. N. Mishra, Modern Mathematical Statistics, John Wiley & Sons, 1988
3 B. Vidakovic, 'Wavelet Based Nonparametric Bayes Methods,' Lecture note in Statistics, vol.133, pp.133-155, 1998
4 J. C. Pesquet, H. Krim, D. Leporini and E. Hamman, 'Bayesian Approach to Best Basis selection,' IEEE Int. Conf. Acous., Speech and Signal Processing, pp. 2634-2637, 1996   DOI
5 Hugh A. Chipman, Eric D. Kolaczyk, and Robert E. McCulloch, 'Adaptive Bayesian Wavelet Shrinkage,' Journal of the American Statistical Association, vol.92, pp.1413-1421, 1997   DOI
6 J. K. Romberg, H. Choi, and R. G. Baraniuk, 'Bayesian tree-structured image modeling using wavelet-domain hidden Markov models,' IEEE. Trans. Image Processing, vol.10, no.7, pp. 1056-1068, 200l   DOI   ScienceOn
7 Z. Cai, T. H. Cheng, C. Lu, and K R. Subramanian, 'Efficient wavelet based image demising algorithm,' Electron. Lett., vol. 37, no.11, pp.683-685, 2001   DOI   ScienceOn
8 J. Pirtilla, V. Strela, M. Wainwright and E Simoncelli, 'Adaptive Wiener Denoising Using a Gaussian Scale Mixture Model,' Proc. IEEE Int. Conf. on Image Processing, 2001   DOI
9 J. Liu and P. Moulin, 'Image denoising based on scale-space mixture modeling of wavelet coefficients,' Proc. IEEE Int. Conf. on Image Processing, Kobe, Japan, 1999   DOI
10 H. Choi, J. Romberg, R. Baraniuk, and N. Kingsbury, 'Hidden Markov Tree Modeling of Complex Wavelet Transforms,' Proc. IEEE Int. Conf. Acous., Speech and Signal Processing, Istanbul, Turkey, June, 2000   DOI
11 L. Sendur and I. W. Selesnick, 'Bivariate shrinkage with local variance estimation,' IEEE Signal Processing Letters, vol.9, no.12, pp.438-441, 2002   DOI   ScienceOn
12 S. G. Chang, B. Yu, and M. Vetterli, 'Spatially adaptive wavelet thresholding with context modeling for image denoising,' IEEE Trans. Image Processing, vol.9, pp.1522-1531, 2000   DOI   ScienceOn
13 M. K. Mihcak, I. Kozintsev, K. Rarnchandran, 'Spatially Adaptive statistical Modeling of Wavelet Image Coefficients and Its Application to Denosing,' Proc, IEEE Int. Conf. Acous., Speech and Signal Processing, vol.6, pp. 3253-3256, 1999   DOI
14 M. K. Mihcak, I. Kozintsev, K. Rarnchandran, and P. Moulin, 'Low-complexity image denoising based on statistical modeling of wavelet coefficients,' IEEE Signal Processing Letters, vol. 6, pp. 300-303, 1999   DOI   ScienceOn
15 D. L. Donoho and 1. M. Jonhstone, 'Adapting to unknown smoothness via wavelet shrinkage,' J. Amer. Statist. Assoc., vol. 90, no. 432, pp. 1200- 1224, 1995   DOI