• Title/Summary/Keyword: 3D 디스플레이

Search Result 926, Processing Time 0.033 seconds

A Study on Blue Light Blocking Performance and Prescription for Blue Light Blocking Lens (청광차단렌즈의 청광차단성능과 처방에 관한 고찰)

  • Yu, Young Guk;Choi, Eun Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.3
    • /
    • pp.297-304
    • /
    • 2013
  • Purpose: To investigate blue light rejection and the percentage of blue light in the visible light of blue light blocking lens according to light source, and to study prescriptions for blue light blocking lens Methods: UV-VIS spectrophotometer was used for blue light rejection and the percentage of blue light in the visible light according to light source, and the percentage of blue light in solar light was used to evaluate the prescription for blue light blocking lens. Results: The blue light rejection and the percentage of blue light in the visible light of each lens were depending on light sources. Through the way to compare the percentages of blue light in the visible light passing through the lens with that in solar light, blue light blocking lenses suitable to each light source could been selected. Conclusions: In the prescription for blue light blocking lens, inquiry for user's display must be preceded. And then the percentages of blue light in the visible light passing through the lens based on that in solar light may be useful as a method of evaluating the prescription for blue light blocking lens.

An Educational Platform for Digital Media Prototype Development: an analysis and a usability study (디지털 미디어 콘텐츠 개발을 위한 교육용 플랫폼의 활용성)

  • Kim, Na-Young
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.8
    • /
    • pp.77-87
    • /
    • 2011
  • The advent of new platforms each year along with the advancement of technology provides a new opportunity for digital media designers to develop creative and innovative contents. This phenomenon affect the same way the students that major in the digital media, and the use of the platforms that is based on the new technology in the development of contents gives a newer and useful opportunity for learning to the students who recently study the digital media area. As the main technology of the recent digital media that attract many students' attention, we are presenting virtual reality display, movement cognition, physical engine and the gesture interface, and developed the consolidated platform based on these four technologies, and designed them in a way that can be more easily implemented in a simpler way. In order to study the efficiency of the platform with the objective of the development of digital media contents, we have developed four different prototype contents, and have measured based on the user's preference, efficiency and satisfaction. In the results of usability evaluation, functionality, effectiveness, efficiency, satisfaction were rated as 'high'. This results shows that the suggested 3D platform environment provides students to develop a rapid prototype fast and easy, and this may have a positive influence on students major in the digital media to conduct creative development research.

Research of Hydraulic Breaker with Rock Properties Predictability Using the ICT (ICT 융합기술을 활용한 암반특성 예측기능을 가진 유압 브레이커 개발에 관한 연구)

  • Yoon, Bok Joong;Lee, Kil Soo;Lim, Hoon;Lee, Ho Yeon;Lee, Myung Gyu;Kwon, Hyuk Jin;Kim, Kab Tae;Joo, Jin Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.683-689
    • /
    • 2017
  • We have carried out the development for hydraulic breaker which can be operated by optimal mode with ICT convergence technology. This developed system can predict the rock properties. Moreover, this system can maximize the energy efficient with intelligent control of hydraulic system. In order to provide the optimal impact force, this system can measure the descending depth of piston with the proximity sensor and discriminate the rock properties with the measuring data and control the piston stroke using solenoid valve eventually. In addition, we have developed the controller, display module and operating device for cascade (multi-level impact) system and applied the module which can communicate each system by wireless communications. In conclusion, the control system which can control the multi-level impact in accordance with strength of rocks has been developed and approved by several field tests.

The effect of viewing distance and the speed of motion-in-depth on visual fatigue (시각적 피로도에 영향을 미치는 시청거리와 깊이방향의 운동속도)

  • Kham, Kee-Taek;Li, Hyung-Chul;Lee, Seung-Hyun
    • Science of Emotion and Sensibility
    • /
    • v.12 no.2
    • /
    • pp.169-180
    • /
    • 2009
  • The present study have investigated the effect of the characteristics of stereoscopic images and viewing environment on visual fatigue. We manipulated the speed of stereo images with motion-in-depth and viewing distance, which were used as representative variables of the characteristics of stereo image and viewing environment, respectively. Visual fatigue was evaluated with use of a subjective questionnaire which is consisting of 5 different and independent factors: "Eye pain", "Visual stress," "Nauseousness", "Body stiffness", and "Blurriness". In general, when viewing time increased from 10 minutes to 20 and 40 minutes, observers felt severe visual fatigue. Among other factors, only the factor score of "Nauseousness" was significantly increased as the speed of object moving in depth became faster. When viewing distance was increased, the score of "Blurriness" was decreased. These results suggest that different kind of the visual fatigue might be induced depending on characteristics of the stereo images and viewing environment.

  • PDF

Dual Codec Based Joint Bit Rate Control Scheme for Terrestrial Stereoscopic 3DTV Broadcast (지상파 스테레오스코픽 3DTV 방송을 위한 이종 부호화기 기반 합동 비트율 제어 연구)

  • Chang, Yong-Jun;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.216-225
    • /
    • 2011
  • Following the proliferation of three-dimensional video contents and displays, many terrestrial broadcasting companies have been preparing for stereoscopic 3DTV service. In terrestrial stereoscopic broadcast, it is a difficult task to code and transmit two video sequences while sustaining as high quality as 2DTV broadcast due to the limited bandwidth defined by the existing digital TV standards such as ATSC. Thus, a terrestrial 3DTV broadcasting with a heterogeneous video codec system, where the left image and right images are based on MPEG-2 and H.264/AVC, respectively, is considered in order to achieve both high quality broadcasting service and compatibility for the existing 2DTV viewers. Without significant change in the current terrestrial broadcasting systems, we propose a joint rate control scheme for stereoscopic 3DTV service based on the heterogeneous dual codec systems. The proposed joint rate control scheme applies to the MPEG-2 encoder a quadratic rate-quantization model which is adopted in the H.264/AVC. Then the controller is designed for the sum of the left and right bitstreams to meet the bandwidth requirement of broadcasting standards while the sum of image distortions is minimized by adjusting quantization parameter obtained from the proposed optimization scheme. Besides, we consider a condition on maintaining quality difference between the left and right images around a desired level in the optimization in order to mitigate negative effects on human visual system. Experimental results demonstrate that the proposed bit rate control scheme outperforms the rate control method where each video coding standard uses its own bit rate control algorithm independently in terms of the increase in PSNR by 2.02%, the decrease in the average absolute quality difference by 77.6% and the reduction in the variance of the quality difference by 74.38%.

Implementation of Radiotherapy Educational Contents Using Virtual Reality (가상현실 기술을 활용한 방사선치료 교육 콘텐츠 제작 구현)

  • Kwon, Soon-Mu;Shim, Jae-Goo;Chon, Kwon-Su
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.409-415
    • /
    • 2018
  • The development of smart devices has brought about significant changes in daily life and one of the most significant changes is the virtual reality zone. Virtual reality is a technology that creates the illusion that a 3D high-resolution image has already been created using a display device just like it does in itself. Unrealized subjects are forced to rely on audiovisual materials, resulting in a decline in the concentration of practices and the quality of classes. It used virtual reality to develop effective teaching materials for radiology students. In order to produce a video clip bridge using virtual reality, a radiology clinic was selected to conduct two exposures from July to September 2017. The video was produced taking into account the radiology and work flow chart and filming was carried out in two separate locations : in the computerized tomography unit and in the LINAC room. Prior to filming the scenario and the filming route were checked in advance to facilitate editing of the video. Modeling and mapping was performed in a PC environment using the Window XP operating system. Using two leading virtual reality camera Gopro Hero, CC pixels were produced using a 4K UHD, Adobe, followed by an 8 megapixel resolution of $3,840{\times}2,160/4,096{\times}2,160$. Total regeneration time was performed in about 5 minutes during the production of using virtual reality to prevent vomiting and dizziness. Currently developed virtual reality radiation and educational contents are being used to secure the market and extend the promotion process to be used by various institutions. The researchers will investigate the satisfaction level of radiation and educational contents using virtual reality and carry out supplementary tasks depending on the results.