• Title/Summary/Keyword: 3D 가상 착의

Search Result 103, Processing Time 0.022 seconds

Comparison of a Bodice Prototype for 20s Plus-size Women

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.79-88
    • /
    • 2022
  • In order to develop a bodice prototype suitable for obese women in their 20s, this study compared and analyzed a total of five pattern system methods, including prototype of France and Japan, one prototype for education in Korea and two prototype for industries in Korea. Through this, this study attempted to investigate the bodice pattern system suitable for the development of plus-size women's clothing. For the pattern drafting, pattern 1 was applied with the most body dimensions such as interscye fold front, interscye fold back, bust circumference, neck circumference, and waist back length, and pattern 2, pattern 4, and pattern 5 were made based on bust circumference and waist back length. As a result of the appearance evaluation, Pattern 3 was evaluated as the best pattern in all items except for the suitability of the center front length and the suitability of the side waist circumference position. However, it was evaluated as inappropriate in items such as the vertical side line, the suitability of the side waist circumference line position, the suitability of interscye fold back position and shape, and the suitability of the back shoulder dart position. Most of the pattern drafting methods are based on the size of the bust circumference, but other institutional methods are considered necessary when setting the neck circumference and shoulder length for 20s obesity women. In addition, it is also required to develop a method for setting the front center length due to abdominal protrusion.

Development of a Bodice Prototype Drafting Method for 20s Plus-size Women

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.99-110
    • /
    • 2022
  • This study attempted to develop a bodice prototype that is the basis for the production of upper body clothing for 20s plus-size women who have distinct characteristics from women with general body types. Through this, it was intended to provide basic data necessary for the development of plus-size women's clothing, which is revitalizing the market due to the increase in the obese population. Through the first evaluation of appearance and abdominal pressure, patterns such as moving the side neck, adding the amount of armhole dart, and adding the amount of sagging were modified. Through the second evaluation, corrections such as vertical side lines, reduction of the neck of the back center line, and adding the amount of armhole darts were performed. Through the third evaluation, the final pattern drafting method was developed by vertically modifying the side line and adding the amount of back armhole darts. In the case of 20s plus-size female body types, a drafting method distinguished from the general body type was required in the method of setting the side and hem due to the protrusion of the abdomen. This study can be said to be meaningful in that it proposed a bodice prototype drafting method suitable for the body type of 20s plus-size women. In the follow-up study, it is thought that the wearability should be evaluated through actual garment wearing.

3-D Finite element stress analysis in screw-type, cement-type, and combined-type implant fixed partial denture designs (임플란트 상부보철물의 유지형태에 따른 3차원 유한요소 응력분석)

  • Lee, Sung-Chun;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.365-375
    • /
    • 2009
  • Statement of problems: Stress analysis on implant components of the combined screw- and cement-retained implant prosthesis has not investigated yet. Purpose: The purpose of this study was to assess the load distribution characteristics of implant prostheses with the different prosthodontic retention types, such as cement-type, screw-type and combined type by using 3-dimensional finite element analysis. Material and methods: A 3-dimensional finite element model was created in which two SS II implants (Osstem Co. Ltd.) were placed in the areas of the first premolar and the first molar in the mandible, and three-unit fixed partial dentures with four different retention types were fabricated on the two SS II implants. Model 1 was a cement-retained implant restoration made on two cement-retained type abutments (Comocta abutment; Osstem Co. Ltd.), and Model 2 was a screw-retained implant restoration made on the screw-retained type abutments (Octa abutment; Osstem Co. Ltd.). Model 3 was a combined type implant restoration made on the cement-retained type abutment (Comocta abutment) for the first molar and the screw-retained type abutment (Octa abutment) for the first premolar. Lastly, Model 4 was a combined type implant restoration made on the screw-retained type abutment (Octa abutment) for the first molar and the cement-retained type abutment (Comocta abutment) for the first premolar. Average masticatory force was applied on the central fossa in a vertical direction, and on the buccal cusp in a vertical and oblique direction for each model. Von-Mises stress patterns on alveolar bone, implant body, abutment, abutment screw, and prosthetic screw around implant prostheses were evaluated through 3-dimensional finite element analysis. Results: Model 2 showed the lowest von Mises stress. In all models, the von Mises stress distribution of cortical bone, cancellous bone and implant body showed the similar pattern. Regardless of loading conditions and type of abutment system, the stress of bone was concentrated on the cortical bone. The von-Mises stress on abutment, abutment screw, and prosthetic screw showed the lower values for the screw-retained type abutment than for the cement-retained type abutment regardless of the model type. There was little reciprocal effect of the abutment system between the molar and the premolar position. For all models, buccal cusp oblique loading caused the largest stress, followed by buccal cusp vertical loading and center vertical loading. Conclusion: Within the limitation of the FEA study, the combined type implant prosthesis did not demonstrate more stress around implant components than the cement type implant prosthesis. Under the assumption of ideal passive fit, the screw-type implant prosthesis showed the east stress around implant components.