• Title/Summary/Keyword: 38-degree of freedom

Search Result 31, Processing Time 0.022 seconds

Lattice Code of Interference Alignment for Interference Channel with 3 Users in CoMP (세 명의 사용자의 간섭 채널을 위한 협력 다중점 송수신(CoMP)에서의 격자(Lattice) 부호 간섭 정렬)

  • Lee, Moon-Ho;Peng, Bu Shi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.27-38
    • /
    • 2012
  • In this paper, we introduce CoMP in 3GPP LTE-Advanced Release 11 to take care of shadowing effects appearing in cell-edge areas to meet rapidly increasing demand for high speed transmission and multi-media data. In order to mitigate interference, orthogonalizing is ideal but it is slightly difficult to be applied to real systems. Therefore, interference alignment and avoidance are used in practical applications. Interference alignment is a scheme enabling us to consider interference our friend not enemy. We show lattice codes in Gaussian channel achieve Shannon capacity where strong interference exists. In addition, we show the relationship between channel parameter a and DoF(Degree of Freedom) applying lattice codes to interference alignment for interference channel with three users.

A Two-Degree-of-Freedom-Controller for DC Motors Using Inverse Dynamics and the Fuzzy Technique (역동력학과 퍼지기법을 이용한 DC 모터용 2자유도 제어기)

  • Kim, Byong-Man;Kim, Jong-Hwa;Yu, Yung-Ho;Jin, Gang-Gyoo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • In this paper, a Two-Degree-of-Freedom-Controller(TDFC) for DC motors based on inverse dynamics and the fuzzy technique is presented. The proposed controller includes the inverse dynamic model of a DC motor system, a prefilter and a fuzzy compensator. The model of the system is characterized by a nonlinear equation with coulomb friction. The prefilter eliminates high frequency effects occurring when the inverse dynamic model is implemented. The fuzzy compensator is designed for tracking the change of the reference input and simultaneously regulating the error between the reference input and the system output which can be caused by disturbances. The optimal parameters of both the model and the compensator are identified by a real-coded genetic algorithm. An experimental work on a DC motor system is carried out to verify the performance of the proposed controller.

Innovative Method to Expand a Degree of Freedom of Observation in the Depth Direction without Losses of the Horizontal Number of Views in Autostereoscopic Multi-Views 3D Display System (시차장벽식 무안경 다시점 입체디스플레이 시스템에서 수평방향의 시점 수 저하 없이 깊이방향의 자유도를 증가시키기 위한 혁신적 방법)

  • Lee, Kwang-Hoon;Park, Min-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.903-910
    • /
    • 2013
  • An autostereoscopic multi-view 3D display system has the narrower degrees of freedom in the observational directions, such as the horizontal and perpendicular directions to the display plane, than the glasses-on type of 3D display. In this paper, we propose an innovative method to expand the width of the viewing zone formed in the depth direction while maintaining the number of views in the horizontal direction by using a triple segmented-slanted parallax barrier (TS-SPB) in the glasses-off type of 3D display. The validity of the proposal was verified by an optical simulation based on an environment similar to an actual case. The maximum number of views that can be displayed in the horizontal direction is 2n, and the width of the viewing zone with depth increased up to a factor of 3.36 compared to the existing one-layered parallax barrier system.

Parameter estimation of a single turbo-prop aircraft dynamic model (단발 터어보프롭 항공기 동적 모델의 파라메터추정)

  • Lee, Hwan;Lee, Sang-Kee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.38-44
    • /
    • 1998
  • The modified maximum likelihood estimation method is used to estimate the nondimensional aerodynamic derivatives of a single turbo-prop aircraft at a specified flight condition for the best deduction of the dynamic characteristics. In wind axes the six degree of freedom equations are algebraically linearized so that the linear state equation contains aerodynamic derivatives in a state-space form and is used in the maximum likelihood method. The simulated data added with the measurement noise is used as a flight test data which is necessary to the estimation of nondimensional aerodynamic derivatives. It is obtained by implementing the 6-DOF nonlinear flight simulation. In the flight simulation, the effects of several control input types, control deflection amplitudes, and the turbulence intensities on the statistical convergence criteria are also examined and quantitative analysis of the results is discussed.

  • PDF

Effect of Design Parameters of Power Steering System for Passenger Cars on the Vehicle Steering Characteristic (승용차용 파워 스티어링 시스템의 설계변수 변화에 따른 차량의 조향특성 해석)

  • 황성호;김홍석;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.38-45
    • /
    • 1996
  • Power steering systems play an important role for the vehicle handling characteristics and driver's steering center feeling during straightforward driving situation. In this paper, the rotary valve, the main component of power steering systems, is modeled and analyzed, and is combined with a 3-DOF(degree of freedom) lateral dynamics model of passenger cars to examine the effects of design parameters on the vehicle steering characteristics. The results can be applied to the development of advanced power steering systems for passenger cars such as electronically-con-trolled power steering system.

  • PDF

A Dynamic Analysis of Rotations at the center of Vehicle Running High Speed KTX Train on the PSC Box Bridges (PSC 교량 위를 고속주행 중인 KTX 전동차의 중심회전각 동적해석)

  • Oh, Soon-Tack;Lee, Dong-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • A dynamic analysis is carried out to provide an evaluation method of running safety for a PSC box bridge located on the Gyung-Bu high speed railway. The numerical models of bridge and train vehicle are developed in detail with corresponding interaction system. Three dimensional skeleton element model of PSC box bridge and 38-degree-of-freedom of vehicle are adopted from the existing properties of KTX bridge and train vehicle. Analysed three direction rotations of vehicle on the bridge and ground tracks are compared for running speeds up to 500 km/h with 10 km/h constant increments. The comparison of the rotations will be an improved evaluation method of Running Safety in stead of the existing standard method.

Effective width of steel-concrete composite beams under negative moments in service stages

  • Zhu, Li;Ma, Qi;Yan, Wu-Tong;Han, Bing;Liu, Wei
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.415-430
    • /
    • 2021
  • The effective flange width was usually introduced into elementary beam theory to consider the shear lag effect in steel-concrete composite beams. Previous studies have primarily focused on the effective width under positive moments and elastic loading, whereas it is still not clear for negative moment cases in the normal service stages. To account for this problem, this paper proposed simplified formulas for the effective flange width and reinforcement stress of composite beams under negative moments in service stages. First, a 10-degree-of-freedom (DOF) fiber beam element considering the shear lag effect and interfacial slip effect was proposed, and a computational procedure was developed in the OpenSees software. The accuracy and applicability of the proposed model were verified through comparisons with experimental results. Second, a method was proposed for determining the effective width of composite beams under negative moments based on reinforcement stress. Employing the proposed model, the simplified formulas were proposed via numerical fitting for cases under uniform loading and centralized loading at the mid-span. Finally, based on the proposed formulas, a simplified calculation method for the reinforcement stress in service stages was established. Comparisons were made between the proposed formulas and design code. The results showed that the design code method greatly underestimated the contribution of concrete under negative moments, leading to notable overestimations in the reinforcement stress and crack width.

A study on the optimal tuning of the hydraulic motion driver parameter by using RCGA (유압 모션 제어기의 최적 제어인자 튜닝에 관한 연구)

  • Shin, Suk-Shin;Noh, Jong-Ho;Park, Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • In this study, 2 degree of freedom PID controller is added to the conventional feed-forward controller for the purpose of improving its limitations such as set-point of tracking performance and disturbance suppression performance in the conventional PID controller. And the controller parameters optimization as a Real Coded Genetic Algorithm (RCGA) is used. Simulation and experiments verify the performance of the controller.

Covariance Matrix Estimation with Small STAP Data through Conversion into Spatial Frequency-Doppler Plane (적은 STAP 데이터의 공간주파수-도플러 평면 변환을 이용한 공분산행렬 추정)

  • Hoon-Gee Yang
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.38-44
    • /
    • 2023
  • Performance of a STAP(space-time adaptive processing) algorithm highly depends on how closely the estimated covariance matrix(CM) resembles the actual CM by the interference in CUT(cell under test). A STAP has 2 dimensional data structure determined by the number of array elements and the number of transmitting pulses and both numbers are generally not small. Thus, to meet the degree of freedom(DOF) of the CM, a huge amount of training data is required. This paper presents an algorithm to generate virtual training data from small received data, via converting them into the data in spatial frequency-Doppler plane. We theoretically derive where the clutter exist in the plane and present the procedure to implement the proposed algorithm. Finally, with the simulated scenario of small received data, we show the proposed algorithm can improve STAP performance.

The numerical solution of dynamic response of SDOF systems using cubic B-spline polynomial functions

  • Shojaee, S.;Rostami, S.;Moeinadini, A.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.211-229
    • /
    • 2011
  • In this paper, we present a new explicit procedure using periodic cubic B-spline interpolation polynomials to solve linear and nonlinear dynamic equation of motion governing single degree of freedom (SDOF) systems. In the proposed approach, a straightforward formulation was derived from the approximation of displacement with B-spline basis in a fluent manner. In this way, there is no need to use a special pre-starting procedure to commence solving the problem. Actually, this method lies in the case of conditionally stable methods. A simple step-by-step algorithm is implemented and presented to calculate dynamic response of SDOF systems. The validity and effectiveness of the proposed method is demonstrated with four examples. The results were compared with those from the numerical methods such as Duhamel integration, Linear Acceleration and also Exact method. The comparison shows that the proposed method is a fast and simple procedure with trivial computational effort and acceptable accuracy exactly like the Linear Acceleration method. But its power point is that its time consumption is notably less than the Linear Acceleration method especially in the nonlinear analysis.