• Title/Summary/Keyword: 35% Hydrogen Peroxide

Search Result 150, Processing Time 0.025 seconds

The effect of tooth bleaching agent contained 35% hydrogen peroxide on the color, microhardness and surface roughness of tooth-colored restorative materials (35% 과산화수소를 함유한 치아미백제가 심미수복재의 색, 미세경도 및 표면 거칠기에 미치는 영향)

  • Shim, Youn-Soo
    • Journal of Korean society of Dental Hygiene
    • /
    • v.12 no.3
    • /
    • pp.533-541
    • /
    • 2012
  • Objectives : The purpose of this study was to evaluate the effects of tooth bleaching agent contained 35% hydrogen peroxide on the color, microhardness and surface roughness of tooth-colored restorative materials. Methods : Four types of tooth-colored restorative materials, including a composite resin(Filtek Z350 ; Z350), a flowable composite resin(Filtek P60 : P60), a compomer(Dyract$^{(R)}$ AP ; DY), and a glass-ionomer cement(KetacTM Molar Easymix ; KM) were used in the study. The specimens($8mm{\times}5mm$) were made by using a customized acrylic mold. Each material was divided into two groups equally(n=40) : experimental group(35% HP) and control group(distilled water). 35% HP group was treated 30 mim/5 days for 15 days. Each 30 minute treatment session consisted of two 15 minute cycles of gel application with 20 second light exposure. The authors measured the color, microhardness, and roughness of the specimens before and after bleaching. The data were analyzed with ANOVA and T-test. Results : 35% HP group showed an apparent color change(${\Delta}E^*$) than control group. In particular, DY and KM showed a noticeable color change and statistically significant differences(p<0.05). 35% HP group showed a reduction in microhardness. Z350 and P60 does not have a statistically significant difference(p>0.05), DY and KM showed a statistically significant difference(p<0.05). Percentage microhardness loss(PML) of control group was 0.6 to 5.5% in the group, 35% HP group was 6.6 to 34.6%. Roughness was increased in 35% HP group after bleaching. Especially DY and KM were significantly increased(p<0.05). Conclusions : Bleaching agents may affect the surface of existing restorations; therefore, they should not be used indiscriminately when tooth-colored restorations are present.

Treatment of Diesel-Contaminated Soils by Fenton Oxidation (디젤로 오염된 토양에의 펜톤 산화공법 적용을 위한 산화제의 주입비 영향 연구)

  • Lim, Myung-Hee;Son, Young-Gyu;Yun, Jun-Ki;Khim, Jee-Hyeong
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.203-210
    • /
    • 2008
  • The batch tests were performed to determine the ratio of Fenton reagent on diesel contaminated soil. The objective of a column test was to determine and optimize the hydrogen peroxide requirements for the remediation of a soil contaminated with diesel fuel. The batch test were done on 5 g diesel contaminated soil containing hydrogen peroxide (35%) and Iron (II) sulfate. The $H_2O_2(g):Fe^{2+}(g)$ ratio varied 1:0, 30:1, 15:1, 5:1, 1:1, with contact reaction time 120min. Initial diesel concentration were 2,000 mg/kg, 5,000 mg/kg, and 10,000 mg/kg. Average diesel removal from the contaminated soil is 97% after 2hrs. Results of this study showed possible application of without addition of iron source. In column test, treatment of a diesel-contaminated soil (initial diesel concentration: 2,000 mg/kg, 5,000 mg/kg, and 10,000 mg/kg) with hydrogen peroxide (35%) only was containing natural-occurring minerals. The time required for the column test was approximately 90min, 180min, 270min; column length was 5 em, 10 em, and 15 em. The most effective stoichiometry (final diesel cone.: $200{\sim}300mg/kg$) of 0.2 g peroxide consumed/mg diesel degraded. Further investigation is required to identify the effect of soil organic matter and soil mineral.

Preparation of ZnO2 Nanoparticles Using Organometallic Zinc(II) Isobutylcarbamate in Organic Solvent

  • Kim, Kyung-A;Cha, Jae-Ryung;Gong, Myoung-Seon;Kim, Jong-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.431-435
    • /
    • 2014
  • Zinc peroxide nanoparticles ($ZnO_2$ NPs) were prepared by reacting zinc(II) isobutylcarbamate, as an organometallic precursor, with hydrogen peroxide ($H_2O_2$) at $60^{\circ}C$. Polyethylene glycol and polyvinylpyrrolidone were used as stabilizers, which suppressed aggregation of the $ZnO_2$ NPs. Conditions such as concentrations of $H_2O_2$ and the stabilizer were systemically controlled to determine their effect on the formation of nano-sized $ZnO_2$ NPs. The formation of stable $ZnO_2$ NPs was confirmed by UV-vis, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction. The TEM images revealed that polyvinylpyrrolidone-stabilized $ZnO_2$ NPs (diameter, 10-30 nm) were well dispersed in the organic solvent. Quite pure ZnO NPs were obtained from the peroxide powder by simple heat treatment of $ZnO_2$. The transition temperature of $170^{\circ}C$ was determined by differential scanning calorimetry.

Characteristics of Phenol Degradation by Fenton Treatment (Fenton 처리에 의한 페놀의 분해 특성)

  • 최석순;염승호;차형준
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.29-35
    • /
    • 1997
  • Phenol, often discharged from petroleum and fine chemical industries is potential carcinogen and was classified into priority pollutant by EPA in USA. It causes serious environmental and health problem if discharged to the environment such as soil or aquifer. The removal efficiency of phenol and COD using Fenton treatment(Hydrogen Peroxide and Ferrous Sulfate) was observed and biodegradability (BOD$_{5}$/COD$_{cr}$) of reaction products were also examined. When 50 mg/l of phenol was treated by Fenton's Reagent(50 mg/l of hydrogen peroxide and 900 mg/l of ferrous sulfate), the removal efficiency of phenol and COD was 100% and 80% respectively in 10 minutes, which suggested this method can be used as actual phenol removal process. The initial biodegradability of 500 mg/l phenol solution was 0.7 but decreased as hydrogen peroxide was increased.

  • PDF

One-pot synthesis of PdAu bimetallic composite nanoparticles and their catalytic activities for hydrogen peroxide generation

  • Xiao, Xiangyun;Kang, Tae-Uook;Nam, Hyobin;Bhang, Suk Ho;Lee, Seung Yong;Ahn, Jae-Pyung;Yu, Taekyung
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2379-2383
    • /
    • 2018
  • We report a facile one-pot aqueous-phase synthesis of PdAu bimetallic nanoparticles with different Pd/Au ratio. The synthesis was conducted by co-reduction of Pd and Au precursor using ascorbic acid as a reducing agent and in the presence of polyallylamine hydrochloride (PAH). By high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectrometry (EDS) analyses, we found that the synthesized nanoparticles had an onion-like core/shell/shell/shell structure with Au-rich core, Pd-rich shell, Au-rich shell, and Pd shell, respectively. We also investigated the catalytic performance of the synthesized PdAu nanoparticles toward hydrogen peroxide generation reaction.

Effect of 35% Hydrogen Peroxide with Dicalcium Phosphate Dihydrate on the Tooth Whitening and Microhardness (35% 과산화수소에 제2인산칼슘를 함유한 치아미백제가 치아의 색과 경도에 미치는 영향)

  • Jeoung, Mi-Ae;Oh, Hye-Seung;Shim, Youn-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.11
    • /
    • pp.235-242
    • /
    • 2010
  • The purpose of this study was to evaluate tooth whitening and microhardness after treatments with tooth bleaching agents containing dicalcium phosphate dihydrate (DCPD) and 35% hydrogen peroxide (HP) which were used in-office bleaching. Thirty enamel specimens were obtained from human premolars and randomly divided into 3 groups(n=10). Tooth bleaching agents were prepared with DCPD (0 g for controls, 0.1 g and 1 g for experimental groups) and HP solution (35% HP). All groups were applied to enamel surfaces for 60 min for 1 day. The pH of each tooth bleaching agent was measured. Tooth color, microhardness of enamel surfaces were also measured. The tooth bleaching agents containing DCPD showed a significant increase in pH compared to the ones without DCPD(p<0.05). Paired t-tests showed significant difference in color values of enamel before and after bleaching in all the groups(p<0.05). As a result, changes in color, containing DCPD group does not contain a statistically significant difference between groups was observed.(p>0.05). In all groups, tooth hardness after bleaching showed a significant decrease in microhardness (p<0.05). However, the DCPD concentration increased in the bleaching, microhardness values slightly decreased. Based on the above results, tooth bleaching agents containing DCPD and 35%HP were equally effective. Due to increases in pH and effective reduction of tooth surface decalcification, the surface characteristics are exposed to a reduced degree of negative effects, resulting in fewer constituent enamel alterations. Thus, commercial availability of the constituents of tooth whitening materials can be achieved.

A Study on the Low Temperature Bleaching of Cotton with Peroxygen Boosters (과산화조제에 의한 면직물의 저온표백에 관한 연구)

  • Choi, Chul Ho;Lee, Chan Min
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.35-42
    • /
    • 1996
  • Peroxodisulfates are being developed as low temperature bleaching agents for cotton fabrics to save the thermal energy. In this research we used the colar difference meter to determine the whiteness which peroxide booster will possibly make an effect on cotton fabric at the low temperature process using consist of temperature with different conditions agents, such as sodium hydroxide, sodium peroxodisulfate and potassium peroxodisulfate. The peroxide bleaching follows a laboratory experiments, using a statistical plan for three variables: the concentrations of hydrogen peroxide and sodium hydroxide and the temperature of bathing. The purpose of this research was to use the response surface analysis method to evaluate the relative importance of factors providing optimum whiteness. A ridge analysis of the data on whiteness response results in 3-D response surface diagrams for optimizing the concentrations of hydrogen peroxide and sodium hydroxide at about 42~52$^{\circ}C$.

  • PDF

Effect of post-bleaching time intervals on resin in dentin bonding strength (미백 후 유예 기간에 따른 상아질과 레진의 결합 강도의 변화)

  • Song, Shin-Jae;Kim, Sun-Jong;Ro, Yong-Seon;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.174-181
    • /
    • 2009
  • Statement of problem: There is a reduction of dentin bonding strength when the bonding procedure is carried out immediately after bleaching with peroxides. Purpose: The aim of this study is to evaluate a proper time interval for in-office bleaching technique using 35% hydrogen peroxide. Material and methods: Fifty extracted non-caries human third molars were used in this study. Buccal enamel of each tooth was removed and polished by 600 grits silicone carbide paper. They were randomly divided into five groups and bleached 35% hydrogen peroxide except control group. All groups were bonded with Single Bond/Z 350 after each time intervals ; Group-A: control, no bleaching treatment. Group-B: resin bonding immediately after bleaching. Group-C: resin bonding 1day after bleaching. Group-D: resin bonding 2 days after bleaching. Group-E: resin bonding 7days after bleaching. Shear bond strengths were measured with a cross-head speed of 1.0 mm/min using an Instron machine. The data of results were statistically analyzed by analysis of variance(ANOVA) and Tukey multiple comparison test.(P=.05) Results: There were significant decreases in mean shear strength in immediately bonding group after bleaching. The reduction of bond strengths was 78% compared with the group of no bleaching treatment. Group C showed the recovery of 51%, and Group D showed recovery of 63%. Both of them have no statistical difference with non-bleaching group. Group E showed no statistical difference with no bleaching treatment group. Conclusion: Dentin bonding strength is significantly reduced when bonding is performed immediately after bleaching for in-office bleaching regimens using 35% hydrogen peroxide, and increases as time goes by. One week of elapsed time between bleaching and resin bonding significantly increases bonding strengths for the in-office bleaching technique.

A clean technology development using the iron(Fe) dissolution reaction with hydrogen peroxide (과산화수소를 이용한 철(Fe)선 용해반응에 따른 청정기술 개발에 관한 연구)

  • 김재우
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.4
    • /
    • pp.62-68
    • /
    • 2001
  • The advantages of hydrogen peroxide dissolution method were no discharge of noxious matter when dissolution of iron wire which used as the center supporter, reactions occur in room temperature and easy to recover dissolved iron. This study was aimed at gathering the basic data of iron wire dissolution- recovery process and proposes the reaction condition of iron wire dissolution- recovery process rind the factors influencing those reactions. The results were as follows : 1 . Hydrogen peroxide dissolution method used hydrochloric acid as the catalyst. 1. In the dissolution of iron wire(1.668 g), the condition of reaction was E1702(30 ml), HCI(20 ml) and $H_2O$(200 ml) ; time of the reaction was 18 min. P.W.(Piece weight) was 7.75 mg, and C.R. was $2.34{\;}{\Omega}$ 2. In the dissolution of iron wire(1.529 g), the condition of reaction was H7O2(30 ml), HCI(20 ml) and $H_2O$(200 ml), time of the reaction was 21 min., P.W.(Piece weight) was 7.73 mg, and C.R. was $2.35{\;}{\Omega}$. Hydrogen peroxide dissolution method used sulfuric acid as the catalyst. 1. In the dissolution of iron wire(0.834 g), the condition of reaction was $H_2O$(65 ml), $H_2SO_4$(5 ml) and 1702(5 ml) ; time of the reaction was 5 min.30 sec, P.W.(Piece weight) was 7.74 mg, and C.R. was $2.33{\;}{\Omega}$ 2. In the dissolution of iron wire(1.112 g), the condition of reaction was $H_2O$(65 ml), $H_2SO_4$(5 ml) and $H_2O_2$(5 ml) ; time of the reaction was 4 min.30 sec, P.W.(Piece weight) was 7.75 mg, and C.R. was $2.33{\;}{\Omega}$. Hydrogen peroxide dissolution method used hydrochloric acid and sulfuric acid as the catalyst confirmed a clean technology, because there were not occurred a pollutant discharged in the existing method.

  • PDF

Transcription of Schizosaccharomyces pombe Thioltransferase-1 in Response to Stress Conditions

  • Kim, Min-Jung;Lim, Chang-Jin;Kim, Dae-Myung
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.409-413
    • /
    • 2002
  • Thioltransferase, also known as glutaredoxin, is an enzyme that catalyzes the reduction of a variety of disulfide compounds. In Schizosaccharomyces pombe, two thioltransferases were reported and the cDNA of one of the thioltransferases (thioltransferase-1) was cloned. Using a Northern blot assay, we investigated the thioltransferase transcription in response to various stress conditions. When the culture was shifted to a high temperature, the thioltransferases transcription was not significantly changed compared to the unshifted $30^{\circ}C$ culture. Treatment of zinc chloride to exponentially-growing cells remarkably increased the thioltransferase transcription, whereas the treatment of mercury chloride greatly reduced the transcription. Treatment of hydrogen peroxide and cadmium chloride caused no significant effects on the transcription of the thioltransferase. These results suggest that the transcription of thioltransferase-1 in S. pombe is induced in response to metal stress that is caused by zinc chloride, but not in response to heat stress or oxidative stress that is caused by hydrogen peroxide.