• Title/Summary/Keyword: 304 SS

Search Result 86, Processing Time 0.02 seconds

Corrosion Behavior of Stainless Steel 304, Titanium, Nickel and Aluminium in Non-Aqueous Electrolytes

  • Dilasari, Bonita;Park, Jesik;Kusumah, Priyandi;Kwon, Kyungjung;Lee, Churl Kyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.26-29
    • /
    • 2014
  • The corrosion behavior of stainless steel 304 (SS 304), titanium, nickel and aluminium is studied by immersion and anodic polarization tests in non-aqueous electrolytes. Tetraethyl ammonium tetrafluoroborate is used as a supporting electrolyte in the three kinds of solvents. The immersion test shows that chemical corrosion rate in propylene carbonate-based electrolyte is lower than those in acetonitrile- or ${\gamma}$-butyrolactone-based electrolytes. Surface analyses do not reveal any corrosion product formed after the immersion test. In the anodic polarization tests, a higher concentration of supporting electrolyte gives a higher current density. In addition, a higher temperature increases the current density in the active region and reduces the potential range in the passive region. SS 304 shows the highest corrosion potential while Al shows the lowest corrosion potential and the highest current density in all studied conditions. Based on the conducted corrosion tests, the corrosion resistance of metal substrates in the organic solvents can be sorted in descending order as follows: SS 304 - Ti - Ni - Al.

On the Effect of Residual Stress on Fracture Behavior at the Welded Zone According to Annealing Temperature (용접부의 열처리에 따른 잔류응력의 파양거동에 미치는 영향)

  • 정석주
    • Journal of the Korean Society of Safety
    • /
    • v.2 no.3
    • /
    • pp.5-11
    • /
    • 1987
  • In this study, a mild steel (SS41) of the carbon steel, a spring steel (SUP-9), and stainless steel (SUS 304) of the special gceel, etc, are adopted as the experimental materrials and are weded by $CO_2$(SS41, SUP-9), TIG (SUS304), respectively. And the residual stress distribution and fracture behavior at the welded zone are examined according to annealing temperatures of four section involving as welded. As a consequence, the best annealing temperatures that the residual stress is removed enough and mechanical properties are very suitable are at 90$0^{\circ}C$ (SS41), 75$0^{\circ}C$ (SUP-9), 110$0^{\circ}C$ (SUS 304), respectively.

  • PDF

Evaluation of Characteristic for SS400 and STS304 steel by Weld Thermal Cycle Simulation - 2nd Report: Corrosion Characteristics (용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 -제2보: 부식특성)

  • Ahn, Seok-Hwan;Choi, Moon-Oh;Kim, Sung-Kwang;Son, Chang-Seok;Nam, Ki-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.33-38
    • /
    • 2007
  • The welding methods have been applied in the most structural products from multi-field of automobile, ship construction and construction, and so on. The structure steel must have enough strength of structure. In this study, SS400 steel and STS304 steel were used to estimate the corrosion characteristics of the weld thermal cycle simulated HAZ. To evaluate the corrosion characteristics, also, the materials with two conditions were used in 3.5% NaCl. The one is to the drawing with diameter of ${\Phi}10$ and the other is to the residual stress removal treatment. The electrochemical polarization test and immersion test were carried out. From test results, corrosion potential, corrosion current density, weight loss ratio and corrosion rate were measured. In the kinds of SS400 steels, corrosion potential of weld thermal cycle simulated specimens after the heat treatment showed somewhat the direction of noble potential. And in the base metal to be drawing weight loss ratio and corrosion rate occurred higher than the other kinds. In the kinds of STS304 steels, the result of base metal to be drawing was similar to results of SS400 steels, too. Two kinds of $750^{\circ}C$ and $1300^{\circ}C$ of weld thermal cycle simulation after the heat treatment were rather higher than the other kinds in weight loss ratio and corrosion rate.

Role of residual ferrites on crevice SCC of austenitic stainless steels in PWR water with high-dissolved oxygen

  • Sinjlawi, Abdullah;Chen, Junjie;Kim, Ho-Sub;Lee, Hyeon Bae;Jang, Changheui;Lee, Sanghoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2552-2564
    • /
    • 2020
  • The crevice stress corrosion cracking (SCC) susceptibility of austenitic stainless steels was evaluated in simulated pressurized water reactor (PWR) environments. To simulate the abnormal condition in temporary clamping devices on leaking small bore pipes, crevice bent beam (CBB) tests were performed in the oxygenated as well as hydrogenated conditions. No SCC cracks were found for SS316 in both conditions. SS304 also showed good resistance in the hydrogenated condition. However, all SS304 specimens showed SCC cracks in the oxygenated condition, indicating poor crevice SCC resistance. It was found that residual ferrites were selectively dissolved because of the galvanic corrosion coupled with the neigh-bouring austenite phase, resulting in SCC initiation in SS304. Crack morphologies were mostly transgranular assisted by the damaged δ-ferrite and deformation-induced slip bands.

Mechanical Properties and Ultrasonic Characteristic of SS400 and STS304 by Simulated Heats (열재현에 의한 SS300 및 STS304의 기계적 성질 및 초음파 특성)

  • Jeong, Jeong-Hwan;Ahn, Seok-Hwan;Park, In-Duck;Nam, Ki-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.127-132
    • /
    • 2003
  • In a today industry, the welding is doing a many portion in structure manufacture. This study is simulated heat of heat-effected zone and researched a mechanical properties and ultrasonic characteristic in used the SS400 and the STS304. As the result mechanical properties of steel that become drawing decreased because of remaining stress by strain gardening according as simulated heat temperature rises, but according as temperature rises in material that do simulated heat after have done annealing, mechanical propensity was improved. The velocity and attenuation become different by effect of remaining stress than effect of material internal microstructure in ultrasonic wave test. In the case of STS304, there was change in mechanical properties by effect that is by strain hardening, but there was no change in material that simulated heat after annealing. When become drawing in ultrasonic waves test, according as simulated heat temperatures rise, change of attenuation coefficient is looked, but material that simulated heat after annealing was no change almost both the volocity and attenuation.

  • PDF

Noticeable localized corrosion of solid boric acid on 304 stainless steel

  • Xinzhu Li;Wen Sun;Guiling Ning
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3616-3625
    • /
    • 2024
  • With the aim to determine the potential corrosion effects of solid boric acid (BA) on light water reactors or other BA-involved equipment, the corrosion behaviors of solid BA on 304 stainless steel (SS) at different temperatures were investigated. Upon comparing the corrosion behaviors of solid BA at different temperatures, significant localized corrosion was observed on 304 SS surfaces at 150 ℃ following 90-day. This localized corrosion exhibited a characteristic pattern of scattered corrosion craters including B-containing Cr-rich oxides. These oxides were found to originate within micro-cracks, gradually evolving into scar-like protrusions within the craters. The proposed corrosion mechanisms entail the interactions between solid BA and chromium oxides/hydroxides, leading to the formation of B-containing Cr-rich oxides. Our findings offer insights into potential corrosion incidents and protective strategies for industries dealing with solid BA.

Development of a duplex stainless steel for dry storage canister with improved chloride-induced stress corrosion cracking resistance

  • Chaewon Jeong;Ji Ho Shin;Byeong Seo Kong;Junjie Chen;Qian Xiao;Changheui Jang;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2131-2140
    • /
    • 2024
  • The chloride-induced stress corrosion cracking (CISCC) is one of the major integrity concerns in dry storage canisters made of austenitic stainless steels (ASSs). In this study, an advanced duplex stainless steel (DSS) with a composition of Fe-19Cr-4Ni-2.5Mo-4.5Mn (ADCS) was developed and its performance was compared with that of commercial ASS and DSS alloys. The chemical composition of ADCS was determined to obtain greater pitting and CISCC resistance as well as a proper combination of strength and ductility. Then, the thermomechanical processing (TMP) condition was applied, which resulted in higher strength than ASSs (304L SS and 316L SS) and better ductility than DSSs (2101 LDSS and 2205 DSS). The potentiodynamic polarization and electrochemical impedance spectra (EIS) results represented the better pitting corrosion resistance of ADCS compared to 304L SS and 316L SS by forming a better passive layer. The CISCC tests using four-point loaded specimens showed that cracks were initiated at 24 h for 304L SS and 144 h for 316L SS, while crack was not found until 1008 h for ADCS. Overall, the developed alloy, ADCS, showed better combination of CISCC resistance and mechanical properties as dry storage canister materials than commercial alloys.

Effects of Surface Machining by a Lathe on Microstructure of Near Surface Layer and Corrosion Behavior of SA182 Grade 304 Stainless Steel in Simulated Primary Water

  • Zhang, Zhiming;Wang, Jianqiu;Han, En-hou;Ke, Wei
    • Corrosion Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • To find proper lathe machining parameters for SA182 Grade 304 stainless steel (SS), six kinds of samples with different machining surface states were prepared using a lathe. Surface morphologies and microstructures of near surface deformed layers on different samples were analysed. Surface morphologies and chemical composition of oxide films formed on different samples in simulated primary water with $100{\mu}g/L\;O_2$ at $310^{\circ}C$ were characterized. Results showed that surface roughness was mainly affected by lathe feed. Surface machining caused grain refinement at the top layer. A severely deformed layer with different thicknesses formed on all samples. In addition to high defect density caused by surface deformation, phase transformation, residual stress, and strain also affected the oxidation behaviour of SA182 Grade 304 SS in the test solution. Machining parameters used for # 4 (feed, 0.15 mm/r; back engagement, 2 mm; cutting speed, 114.86 m/min) and # 6 (feed,0.20 mm/r; back engagement, 1 mm; cutting speed, 73.01 m/min) samples were found to be proper for lathe machining of SA182 Grade 304 SS.

KiSS1, KiSS2, GPR54 mRNA Expression of the Blacktip Grouper Epinephelus fasciatus (홍바리 Epinephelus fasciatus의 KiSS1, KiSS2, GPR54 mRNA 발현양상)

  • Kang, Hyeong-Cheol;Lee, Chi-Hoon;Song, Young-Bo;Baek, Hea-Ja;Kim, Hyung-Bae;Lee, Young-Don
    • Development and Reproduction
    • /
    • v.16 no.2
    • /
    • pp.121-128
    • /
    • 2012
  • Kisspeptin has been reported to facilitate sexual maturation and ovulation by directly stimulating GnRH neurons via its receptor, GPR54. The KiSS-GPR54 system is playing an important role in the reproduction of several mammalian species. However, little is known about their function in fish. The aim of this study is to understand the physiological function and evolutionary conservation of KiSS-GPR54 system in teleost fish blacktip grouper, Epinephelus fasciatus. In the present study, we have partial cloned KiSS1, KiSS2 GPR54 mRNAs from a brain samples. Tissue distribution analysis using RT-PCR revealed that the KiSS1, KiSS2, GPR54 transcripts were expressed in different tissue. The KiSS-GPR54 system in gonadal of immature and mature stage were analyzed using qRT-PCR. The partial sequence of KiSS1, KiSS2, GPR54 were 232 bp, 304 bp, 613 bp long, respectively. KiSS1, KiSS2, GPR54 mRNAs are shown common expression in the brain. The amount of KiSS1, KiSS2 mRNAs expression were significantly higher in mature stage than immature stage. However GPR54 mRNA expression was higher in immature stage. These results are in good agreement with the hypothesis that KiSS-GPR54 system plays an important role in the regulation of reproductive function in the blacktip grouper.

Deformation behaviours of SS304 tubes in pulsating hydroforming processes

  • Yang, Lianfa;Wang, Ninghua;He, Yulin
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.91-110
    • /
    • 2016
  • Tube hydroforming (THF) under pulsating hydraulic pressures is a novel technique that applies pulsating hydraulic pressures that are periodically increased to deform tubular materials. The deformation behaviours of tubes in pulsating THF may differ compared to those in conventional non-pulsating THF due to the pulsating hydraulic pressures. The equivalent stress-strain relationship of metal materials is an ideal way to describe the deformation behaviours of the materials in plastic deformation. In this paper, the equivalent stress-strain relationships of SS304 tubes in pulsating hydroforming are determined based on experiments and simulation of free hydraulic bulging (FHB), and compared with those of SS304 tubes in non-pulsating THF and uniaxial tensile tests (UTT). The effect of the pulsation parameters, including amplitude and frequency, on the equivalent stress-strain relationships is investigated to reveal the plastic deformation behaviours of tubes in pulsating hydroforming. The results show that the deformation behaviours of tubes in pulsating hydroforming can be well described by the equivalent stress-stain relationship obtained by the proposed method. The amplitude and frequency of pulsating hydraulic pressure have distinct effects on the equivalent stress-strain relationships-the equivalent stress becomes augmented and the formability is enhanced with the increase of the pulsation amplitude and frequency.