• Title/Summary/Keyword: 3-phase power

Search Result 3,121, Processing Time 0.034 seconds

A Comparative Study on Power Generation Characteristics of Permanent Magnet Synchronous Generators for Green Ship

  • Kato, Shinji;Cho, Gyeong-Rae;Michihira, Masakazu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.378-386
    • /
    • 2012
  • For reduction of the amount of CO2 emitted from ships, power generation characteristics of two power generation systems consisting of a high-efficiency permanent magnet synchronous generator and diode bridge rictifiers are discussed in this paper. One of the discussed systems has three-phase stator windings, and the other has two sets of three-phase (six-phase) stator windings to reduce pulsation in the electromagnetic torque and DC current. Experimental results reveal that the power generation efficiency of the system having six-phase stator windings is higher than that of the system having three-phase stator windings for a light load. The maximum power generation efficiency of the system having six-phase stator windings is almost the same as that of the system having three-phase stator windings. For the electromagnetic torque of the system having six-phase stator windings, the width of pulsation is about one-fifth compared to the system having three-phase stator windings.

Model of Photovoltaic Systems for 3 Phase Power Flow (3상 조류 계산을 위한 Photovoltaic 시스템 모델)

  • Ryan, Diolata;Song, Hwa-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.311-313
    • /
    • 2007
  • Three phase power flow is commonly considered exclusively for the distribution systems, where single or double phase circuits may be present and loads may not always balanced between the three phases. This paper deals with modelling and analysis of grid connected photovoltaic (PV) system in three-phase power flow, with the consideration of the PV inverter output power limitations.

  • PDF

Optimization of Wind Power Dispatch to Minimize Energy Storage System Capacity

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1080-1088
    • /
    • 2014
  • By combining a wind turbine with an energy storage system (ESS), we are able to attenuate the intermittent wind power characteristic making the power derived from a wind farm dispatchable. This paper evaluates the influence of the phase delay of the low-pass filter in the conventional smoothing power control on the ESS capacity; longer phase delays require a larger ESS capacity. In order to eliminate the effect of the phase delay, we optimize the power dispatch using a zero-phase low-pass filter that results in a non-delayed response in the power dispatch. The proposed power dispatching method significantly minimizes the ESS capacity. In addition, the zero-phase low-pass filter, which is a symmetrical forward-reverse finite impulse response type, is designed simply with a small number of coefficients. Therefore, the proposed dispatching method is not only optimal, but can also be feasibly applied to real wind farms. The efficacy of the proposed dispatching method is verified by integrating a 3 MW wind turbine into the grid using wind data measured on Jeju Island.

The Prototype-Making of a Three-Phase Power Management Device for the Industrial Switchgear (산업용 분전반 적용을 위한 3상 전력 관리 장치 시작품 제작에 대한 연구)

  • Ko, Yun-Seok;Shin, Hyun-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.498-503
    • /
    • 2010
  • Recently, the industrial electric customers require a digital switchgear which can improve the safety and reliability of the power supply, and the quality of electric power by on-line monitoring the electric power information based on the internet under the ubiquitous environments. Accordingly, in this paper, a industrial switch-gear prototype is designed based on the power supply method of three phase, four-line type, and then a three-phase electric management module of the digital switchgear is made for industrial electric customer system. Finally, the three-phase voltage and current measuring function of the prototype is verified from real power load test.

Modeling and Analysis of Three Phase PWM Converter (3상 PWM 컨버터의 모델링 및 해석)

  • 조국춘;박채운;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.328-335
    • /
    • 1999
  • Three phase full bridge rectifier has been used to obtain dc voltage from three phase ac voltage source. The rectifier system has drawbacks that power factor is low and power flow is unidirectional. Therefore, when dc voltage increases due to regeneration of power the dynamic resister for dissipation of regeneration power must be installed. But three phase PWM converter can be controlled to operate with unity power factor and bidirectional power flow. Therefore when the PWM converter is used as do supply system, the dissipating resistor is not necessary. On this thesis, in order to design a controller having good performance, the hee phase PWM converter is completely modeled by using circuit DQ-transformation and thus a general and simple instructive equivalent circuit is obtained; the inductor set becomes a second order gyrator-coupled system and three phase inverter becomes a transformer as well. Under given phase angle(${\alpha}$) and modulation index(MI) of the three phase inverter, the dc and ac characteristics are obtained by analysis of the transformed equivalent circuit The validity of the equivalent circuit is confirmed through PSPICE simulation. And based on the dc and ac characteristics a controller with unity power factor is proposed.

  • PDF

A New Control Method of Series Active Power Filter with Harmonic Voltage Source (고조파 전압원에 대한 직렬형 능동전력필터의 새로운 제어법)

  • Ko, Soo-Hyun;Shin, Jae-Hwa;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1033-1036
    • /
    • 2002
  • This paper introduces a control method of series active power filter that compensate harmonic currents and eliminate a neutral line current in 3 phase 3 wire and 3 phase 4 wire power system with harmonic voltage source. These harmonic currents and neutral line current are caused by a nonlinear loads such as diode rectifiers and thyristor converters. Proposed methode extracts a voltage reference directly from performance function without phase transformation. Therefore, the control method is simpler than any other conventional methods. Experimental results for 3-phase 3-wire and 3-phase 4-wire series active power filter system were shown to verify the effectiveness of this control method.

  • PDF

A Comparative Study on the Performance of Two-Phase and Three-Phase Randomized Pulse Position PWM Scheme for Mitigation of Audible Switching Acoustic Noise in Motor Drives (모터 구동 장치의 가청 스위칭 소음 저감을 위한 2상 및 3상 랜덤 펄스 위치 PWM기법의 성능 비교)

  • 정영국;위석오;나석환;임영철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.224-236
    • /
    • 2002
  • In this paper, a comparative study on the performance of two-phase and three-phase randomized pulse position PWM scheme for mitigation of audible switching acoustic noise in motor drives is done. In the randomized Pulse Position PW, each of two-Phase or three-phase PWM Pulses is located randomly in each switching interval. Simulation and experimental efforts were executed to investigate the spread effects of Power spectra of inverter output voltage, waveforms of ripple current and audible switching acoustic noise. As results, two-phase RP% scheme is more effective from the viewpoint of switching loss and ease of implementation while the three-phase RPWM scheme is more effective from the viewpoint of the spread effects of power spectra. Also, from the view point of the audible switching acoustic noise in motor drives, two-phase and three-phase RPW schemes are nearly the same.

Analysis of Reduction Effect of Three Harmonic Currents by Zigzag Wiring of Single Phase Transformer (단상 변압기 지그재그 결선에 의한 3고조파 전류 저감 효과 분석)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.3
    • /
    • pp.99-104
    • /
    • 2017
  • The three-phase four-wire power distribution system can be used to supply power to single-phase and three-phase loads at the same time. There are linear loads and nonlinear loads as single-phase loads connected to each phase. The nonlinear load generates a harmonic current during the power energy conversion process. In particular, the single-phase nonlinear load has a higher proportion of generation of the third harmonic current than the harmonics of the other orders. In a three-phase four-wire system, the third harmonic current flows through the neutral wire to the power supply side, affecting the power supply side and the line. Furthermore, the magnitude of the current flowing in the neutral line can be higher than the current flowing in the individual phase. If the neutral current is higher than the phase current, the breaker may be blocked. Therefore, it is necessary to reduce the amount of current flowing in the neutral line by harmonics. There is a method of zigzag connecting a single phase transformer by a method of reducing 3 harmonic current. In this study, the method of reducing the magnitude of the three harmonic currents flowing through the zigzag wire by comparing the polarity and the negative polarity characteristics of the single phase transformer was compared through measurement and simulation.

Cascade 3-Phase IHCML Inverter using maximal distension vector control (최근접 벡터 제어기법을 이용한 Cascade 3상 IHCML 인버터)

  • Song, Sung-Geun;Park, Sung-Jun;Nam, Hae-Kon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.187-189
    • /
    • 2007
  • In this paper, the cascade 3-phase IHMCL inverter using two low frequency transformers is proposed. The proposed inverter is constructed by connecting a 3-phase IHCML inverter. the cascade 3-phase IHCML inverter has several advantages. One advantage is that only one input power source is required because of using transformers to isolate. Another advantage is that the switching frequency of the high power switches is almost fundamental frequency of reference and the other the switching frequency of the low power switches is higher. It can be known that cascade 3 phase IHCML inverter has the excellent efficiency and the outstanding electric quality. lastly, we tested the 5kW cascade 3-phase IHCML inverter to clarify the proposed electric circuit and reasonableness of control signal for the proposed inverter.

  • PDF

Wideband 6-port Phase Correlator Using Caxial Cable Impedance Transformer and Wireline Coupler (동축선 임피던스 변환기와 Wireline Coupler를 이용한 광대역 6-단자 위상 상관기)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1188-1195
    • /
    • 2022
  • The 6-port phase correlator consists of one in-phase power divider and three 3-dB 90-degree phase difference power dividers, and is mainly used in a demodulation circuit that determines the phase of an input signal. This paper proposes the wideband 6-port phase correlator that consists of an in-phase power divider using a wideband 2:1 impedance transformer with three 37.5-Ω coaxial cables, and a 3-dB 90-degree phase difference power divide using Wireline. The proposed wideband phase correlator fabricated at a center frequency of 1000MHz has the value of the input reflection coefficient(S11 and S22) -14dB or less in the frequency range of 640~1270MHz. Also, the signal transmission characteristic(Si1), from the in-phase power divider input port to four output ports, has the amplitude of -6.5±0.6dB and the phase error of within ±3.4°, and the signal transmission characteristic(Si2), from the 90 degree phase difference power divider input port to four output ports, has the amplitude of -6.1±0.6dB and the phase error of within ±6.2°.