Browse > Article
http://dx.doi.org/10.5370/JEET.2014.9.3.1080

Optimization of Wind Power Dispatch to Minimize Energy Storage System Capacity  

Nguyen, Cong-Long (School of Electrical Engineering, University of Ulsan)
Lee, Hong-Hee (School of Electrical Engineering, University of Ulsan)
Publication Information
Journal of Electrical Engineering and Technology / v.9, no.3, 2014 , pp. 1080-1088 More about this Journal
Abstract
By combining a wind turbine with an energy storage system (ESS), we are able to attenuate the intermittent wind power characteristic making the power derived from a wind farm dispatchable. This paper evaluates the influence of the phase delay of the low-pass filter in the conventional smoothing power control on the ESS capacity; longer phase delays require a larger ESS capacity. In order to eliminate the effect of the phase delay, we optimize the power dispatch using a zero-phase low-pass filter that results in a non-delayed response in the power dispatch. The proposed power dispatching method significantly minimizes the ESS capacity. In addition, the zero-phase low-pass filter, which is a symmetrical forward-reverse finite impulse response type, is designed simply with a small number of coefficients. Therefore, the proposed dispatching method is not only optimal, but can also be feasibly applied to real wind farms. The efficacy of the proposed dispatching method is verified by integrating a 3 MW wind turbine into the grid using wind data measured on Jeju Island.
Keywords
Wind energy conversion systems (WECS); Energy storage system (ESS); Wind power dispatching methods; Zero-phase low-pass filter;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Renewables 2012 Global Status Report [Online]: http:// www.map.ren21.net/GSR/GSR2012_low.pdf.
2 R. Teodorescu, M. Liserre, and P. Rodriguez, "Grid Converters for Photovoltaic and Wind Power Systems," John Wiley & Sons, 2011.
3 S. Teleke,M. E. Baran, S. Bhattacharya, and A. Q. Huang, "Rule-Based Control of Battery Energy Storage for Dispatching Intermittent Renewable Sources," IEEE Trans. Sustain. Energy, vol. 1, no. 3, pp. 117-124, Oct. 2010.   DOI   ScienceOn
4 C. Luo and B. T. Ooi, "Frequency Deviation of Thermal Power Plants due to Wind Farms," IEEE Trans. Energy Convers., vol. 21, no. 3, pp. 708-716, Sept. 2006.   DOI   ScienceOn
5 T. Senjyu, R. Sakamoto, N. Urasaki, T. Funabashi, H. Fujita, and H. Sekine, "Output Power Leveling of Wind Turbine Generator for all Operating Regions by Pitch Angle Control," IEEE Trans. Energy Convers., vol. 21, no. 2, pp. 467-475, Jun. 2006.   DOI   ScienceOn
6 D. L. Yao, S. S. Choi, K. J. Tseng, T. T. Lie, "Determination of Short-Term Power Dispatch Schedule for a Wind Farm Incorporated with Dual-Battery Energy Storage Scheme," IEEE Trans. Sustain. Energy, vol. 3, no. 1, pp. 74-84, Jan. 2012.   DOI   ScienceOn
7 X. Y. Wang, D. V. Mahinda, and S. S. Choi, "Determination of Battery Storage Capacity in Energy Buffer for Wind Farm," IEEE Trans. Energy Convers., vol. 23, no. 3, pp. 868-878, Sept. 2008.   DOI   ScienceOn
8 S. Teleke, M. E. Baran, S. Bhattacharya, and A. Q. Huang, "Optimal Control of Battery Energy Storage for Wind Farm Dispatching," IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 787-794, Sept. 2010.   DOI   ScienceOn
9 K. W. Wee, S. S. Choi, and D. M. Vilathgamuwa, "Design of a Least-Cost Battery-Supercapacitor Energy Storage System for Realizing Dispatchable Wind Power," IEEE Trans. Sustain. Energy, vol. 4, no. 3, pp. 786-796, Jul. 2013.   DOI   ScienceOn
10 Q. Li, S. S. Choi, Y. Yuan, and D. L. Yao, "On the Determination of Battery Energy Storage Capacity and Short-Term Power Dispatch of a Wind Farm," IEEE Trans. Sustain. Energy, vol. 2, no. 2, pp. 148-158, Apr. 2011.   DOI   ScienceOn
11 Q. Jiang and H. Wang, "Two-Time-Scale Coordination Control for a Battery Energy Storage System to Mitigate Wind Power Fluctuations," IEEE Trans. Energy Convers., vol. 28, no. 1, pp. 52-61, Mar. 2013.   DOI   ScienceOn
12 C. L. Nguyen, T. W. Chun, and H. H. Lee, "Determination of the Optimal Battery Capacity Based on a Life Time Cost Function in Wind Farm," Energy Conversion Congress and Exposition (ECCE), 2013 IEEE, CO. USA, pp. 51-58, Sept. 2013
13 K. Yoshimoto, T. Nanahara, and G. Koshimizu, "New Control Method for Regulating State-of-Charge of a Battery in Hybrid Wind Power/Battery Energy Storage System," IEEE PES Power Systems Conf. and Expo., pp. 1244-1251, Oct.29-Nov.1 2006.
14 C.L. Nguyen, H.J. Kim, T.S. Lee, and H.H. Lee, "An Effective Dispatching Power Control to Minimize Energy Storage System in Wind Farm," International Smart Grid Conference & Exhibition 2013, Jeju, Korea, pp. 600-606, Jul. 2013.
15 Q. Jiang, Y. Gong, and H. Wang, "A Battery Energy Storage System Dual-Layer Control Strategy for Mitigating Wind Farm Fluctuations," IEEE Trans. Power Sys., vol. 28, no. 3, pp. 3263-3273, Aug. 2013.   DOI   ScienceOn
16 M. A. Tankari, M. B. Camara, B. Dakyo, and C. Nichita, "Wind Power Integration in Hybrid Power System Active Energy Management," 2009 Ecol. Vehicle & Renew. Energy Conf., pp. 1-6, Mar. 2009.
17 Chi Tsong Chen, "Digital Signal Processing- Spectral Computation and Filter Design," Oxford Univ. Press, chap. 7, pp. 294-313, 2001.
18 H. Li, and Z. Chen, "Overview of Different Wind Generator Systems and Their Comparisons," IET Renew. Power Generation, vol. 2, no. 2, pp. 123-138, Jun. 2008.   DOI   ScienceOn
19 J. N. Baker and A. Collinson, "Electrical Energy Storage at the Turn of the Millennium," Inst. Elect. Eng. Power Eng. J., vol. 13, no. 3, pp. 107-112, Jun. 1999.
20 P. Pinson and H. Madsen, "Probabilistic Forecasting of Wind Power at the Minute Time-Scale with Markov-Switching Autoregressive Models," Probabilistic Methods Applied to Power Systems, PMAPS'08, pp. 1-8, May 2008.
21 H. V. Brussel, C. H. Chen, and J. Swevers, "Accurate Motion Controller Design Based on an Extended Pole Placement Method and a Disturbance Observer," Ann. CIRP, vol. 43, no. 1, pp. 367-772, 1994.   DOI   ScienceOn
22 C.J. Kempf and S.Kobayashi, "Disturbance Observer and Feed-Forward Design for a High-Speed Disk-Drive Positioning Table," IEEE Trans. Contr. Sys. Tech., vol. 7, no. 5, pp. 513-525, Sept. 1999.   DOI   ScienceOn
23 V112-3.0MW [Online]. Available: http://creativeenergyalternatives.com/wind/Vestas_V_112_web_100309.pdf.
24 S. Heier, "Grid Integration of Wind Energy Conversion Systems," John Wiley & Sons. pp. 45, 2nd Edition, 2006.
25 J. K. Lyu, M. K. Kim, and J. K. Park, "Impacts of Wind Power Integration on Generation Dispatch in Power Systems," J. Electr. Eng. Technol., vol. 8, no. 3, pp. 238-243, May 2013.   DOI   ScienceOn