• Title/Summary/Keyword: 3-phase AC-DC converter

Search Result 181, Processing Time 0.03 seconds

Development of Multi-Phase Converter based Utility-Interactive PCS for 3kW Fuel Cell System (멀티페이즈 컨버터 기반 3kW급 연료전지용 계통연계 PCS 개발)

  • Han, Dong-Hwa;Choe, Gyu-Ha;Chae, Young-Min;Cho, Jun-Seok;Lim, Jung-Min
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.3-5
    • /
    • 2010
  • 본 논문은 연료전지를 이용한 가정용 발전시스템의 계통 연계를 위한 3kW급 전력변환 시스템의 개발에 관한 것이다. 저전압 대전류 출력특성을 갖는 연료전지의 전류리플 최소화를 위해 멀티페이즈 컨버터를 적용한 DC/DC 승압 컨버터를 제안하고자 한다. 특히 고밀도 전력변환 시스템의 스위칭 손실 극소화를 위해 고효율 ZVS Soft-Switching 동작을 구현하였다. 또한 본 연구에서는 높은 승압비로 변환된 전압을 통해 계통운전 동작을 수행하기 위한 DC/AC 단상 인버터와 고효율 무결점 기능을 갖는 디지털 방식의 DSP를 적용한 제어기 개발도 병행하여 수행되었다. 제안하는 3kW급 멀티페이즈 컨버터 및 계통연계형 인버터의 Proto-Type을 제작하고 실험을 통해 본 방식의 타당성을 검증하였다.

  • PDF

A study on the Conducted Noise Reduction in Three-Phase Boost Converter using Random Pulse Width Modulation (Random PWM 기법을 이용한 3상 승압형 컨버터 전도노이즈 저감에 관한 연구)

  • Jung, Dong-Hyo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.120-125
    • /
    • 2002
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. In the switching-mode power converter, the output voltage is generally controlled by varying the duty ratio of main switch. When a converter operates in steady state, duty ratio of the converter is kept constant. So the power of switching noise is concentrated in specific frequencies. Generally, to reduce the EMI and improve the immunity of converter system, the switching frequency of converter needs to be properly modulated during a rectified line period instead of being kept constant. Random Pulse Width Modulation (RPWM) is performed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300V/1kW with 5%~30% white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

The Control of Three Phase High Power Factor PWM converter using Reduced - Order Luenberger Observer (축소차원 Luenberger 관측기를 이용한 3상 PWM 컨버터의 고역률 제어)

  • Yang, Lee-Woo;Kim, Young-Cho;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2478-2480
    • /
    • 1999
  • In this paper, the authors propose a current control system for three phase PWM AC/DC converter without the source voltage sensors. The sinusoidal input current and unity effective power factor are realised based on the estimated source voltage in the controller. The estimation of source voltage is performed based on Luenberger observer using actual currents. The estimated source voltage is used to accomplish unity power factor. The proposed method is proved by simulations.

  • PDF

A Study on Electromagnetic Retarder's Power Recovery System and Regenerating Voltage Control (전자기형 리타더의 전력회수장치 및 회생전압제어에 대한 연구)

  • Jung, Sung-Chul;Ko, Jong-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1207-1214
    • /
    • 2017
  • In the case of frequent braking, when driving downhill or long distance, conventional brakes using friction are problematic in braking safety due to brake rupture and fading phenomenon. Therefore auxiliary brakes is essential for heavy vehicles. And several research has been actively conducted to improve energy efficiency by regenerating mechanical energy into electric energy when the vehicles brake. In this paper, a voltage control method is utilized to recover the electric energy generated in the electromagnetic retarder instead of the eddy current. To regenerate the braking energy into the electrical energy, a resonant L-C circuit is configured in the retarder. The retarder can be modeled as self-excited induction generator due to its operating principle. The driving conditions according to the retarder's parameters are made into 3-D maps. Also, the voltage of the resonant circuit changing depending on the driving pulse applied to the FET was analyzed. For the control of this voltage, we proposed an algorithm using the PI controller. The controlled voltage is converted by a 3-phase AC/DC converter and then charged to a battery inside the heavy vehicles through a DC/DC converter. Electromagnetic retarder and its controller are validated using Matlab Simulink. We also demonstrate the voltage controller through the actual M-G set experiment.

A Study on the Analysis of the Output Waveform of Three-Phase Regular Sampling PWM Inverter (3상 레귤러 샘플링 PWM 인버터의 출력파행 분석에 관한 연구)

  • 노창주
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.3
    • /
    • pp.274-285
    • /
    • 1992
  • Among various Power converters, a variable voltage variable frequency (VVVF) three-phase PWM inverter is regarded as most promising power converter due to its capabilities, which permits the control of voltage, frequency and harmonic contents in a single power stage employing only on DC source. As a modulating technique of the PWM inverter, the regular sampling technique has rendered possible the on-line computation and generation of PWM control waveforms with a reasonably high switching frequencies. In this paper, microprocessor based three-phase regular samping PWM inverter with real-time control algorithm and control circuits for driving three phase AC motor has been developed. Harmocic components of PWM waveform were analized theoretically in terms of Bessel function series and then calculated by digital computer and observed with spectrum analyzer.

  • PDF

Active Damping of LLCL Filters Using PR Control for Grid-Connected Three-Level T-Type Converters

  • Alemi, Payam;Jeong, Seon-Yeong;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.786-795
    • /
    • 2015
  • In this paper, an active damping control scheme for LLCL filters based on the PR (proportional-resonant) regulator is proposed for grid-connected three-level T-type PWM converter systems. The PR controller gives an infinite gain at the resonance frequency. As a result, the oscillation can be suppressed at that frequency. In order to improve the stability of the system in the case of grid impedance variations, online grid impedance estimation is applied. Simulation and experimental results have verified the effectiveness of the proposed scheme for three-phase T-type AC/DC PWM converters.

Development of the Boost Type Auxiliary Coach Converter (객차용 BOOST형 보조전원장치에 관한 연구)

  • 김태완;박건태;정기찬;이성목;김두식
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.727-732
    • /
    • 2000
  • This paper is on the development of a auxiliary power supply for the coach of Indian Railways. The auxiliary power supply system supplies the power for air-conditioners, air-compressors, lighting equipments, controllers, etc. It converts the input voltage, DC 110V which is supplied from battery, to AC 3${\Phi}$ 415V of 30kVA capacity. This is a low voltage-high current type converter system and largely consists of boost chopper and 3 phase inverter. Adopting a optimal control algorithm and simple power circuit, we realized the more reliable and competitive system for satisfaction of Indian Railway's strict requirement for vibration, temperature and dust. We completed the design, the manufacture and the field test of the system successfully and proved the system performance and reliability as a result of those tests.

  • PDF

A Novel Control Strategy for a Three-Phase Rectifier with High Power Factor and Stable Output Voltage

  • Lee, Hong-Hee;Phan, Van-Tung;Sergey, Brovanov;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.203-212
    • /
    • 2007
  • In this paper, a proposed approach to improve the power factor of three-phase rectifiers and to stabilize the output voltage against load change is presented. The elements of the given control strategy are small size, low cost, high performance, and simplicity. The proposed control strategy of switches is based on a prototype of three bi-directional switched consisting of four diodes and one IGBT. A control technique and operational procedure are also developed, both theoretically and experimentally. The experimental results clearly verify the theoretical analysis from the prototype connected to grid unity.

Compensation of Neutral Point Deviation under Generalized 3-Phase Imbalance in 3-level NPC

  • Jung, Kyungsub;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1866-1878
    • /
    • 2018
  • This paper presents a neutral point deviation and ripple compensation control method for application to 3-level NPC converters. The neutral point deviation and its harmonic components are analyzed with a focus on the average current flowing through the neutral point of the dc-link. This paper also proposes a control scheme to compensate for the neutral point deviation and dominant harmonic components under generalized unbalanced grid operating conditions. The positive and negative sequence components of the pole voltages and ac input currents are employed to accurately explain the behavior of 3-level NPC converters. Simulation and experimental results are presented to verify the validity of the proposed method.

Improvement of LCC-HVDC Input-Output Characteristics using a VSC-MMC Structure

  • Kim, Soo-Yeon;Park, Seong-Mi;Park, Sung-Jun;Kim, Chun-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_1
    • /
    • pp.377-385
    • /
    • 2021
  • High voltage direct current(HVDC) systems has been an alternative method of a power transmission to replace high voltage alternate current(HVAC), which is a traditional AC transmission method. Due to technical limitations, Line commutate converter HVDC(LCC-HVDC) was mainly used. However, result from many structural problems of LCC-HVDC, the voltage source converter HVDC(VSC-HVDC) are studied and applied recently. In this paper, after analyzing the reactive power and output voltage ripple, which are the main problems of LCC-HVDC, the characteristics of each HVDC are summarized. Based on this result, a new LCC-HVDC structure is proposed by combining LCC-HVDC with the MMC structure, which is a representative VSC-HVDC topology. The proposed structure generates lower reactive power than the conventional method, and greatly reduces the 12th harmonic, a major component of output voltage ripple. In addition, it can be easily applied to the already installed LCC-HVDC. When the proposed method is applied, the control of the reactive power compensator becomes unnecessary, and there is an advantage that the cut-off frequency of the output DC filter can be designed smaller. The validity of the proposed LCC-HVDC is verified through simulation and experiments.