• Title/Summary/Keyword: 3-parameter Equation of State

Search Result 69, Processing Time 0.021 seconds

The Research on the Modeling and Parameter Optimization of the EV Battery (전기자동차 배터리 모델링 및 파라미터 최적화 기법 연구)

  • Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.227-234
    • /
    • 2020
  • This paper presents the methods for the modeling and parameter optimization of the electric vehicle battery. The state variables of the battery are defined, and the test methods for battery parameters are presented. The state-space equation, which consists of four state variables, and the output equation, which is a combination of to-be-determined parameters, are shown. The parameter optimization method is the key point of this study. The least square of the modeling error can be used as an initial value of the multivariable function. It is equivalent to find the minimum value of the error function to obtain optimal parameters from multivariable function. The SIMULINK model is presented, and the 10-hour full operational range test results are shown to verify the performance of the model. The modeling error for 25 degrees is approximately 1% for full operational ranges. The comments to enhance modeling accuracy are shown in the conclusion.

BIFURCATIONS IN A DISCRETE NONLINEAR DIFFUSION EQUATION

  • Kim, Yong-In
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.689-700
    • /
    • 1998
  • We consider an infinite dimensional dynamical system what is called Lattice Dynamical System given by a discrete nonlinear diffusion equation. By assuming the nonlinearity to be a general nonlinear function with mild restrictions, we show that as the diffusion parameter changes the stationery state of the given system undergoes bifurcations from the zero state to a bounded invariant set or a 3- or 4-periodic state in the global phase space of the given system according to the values of the coefficients of the linear part of the given nonlinearity.

  • PDF

Cubic Equation of State Analysis for the Prediction of Supercritical Thermodynamic Properties of Hydrocarbon Fuels with High Critical Compressibility Factor (고 임계 압축인자를 갖는 탄화수소 연료의 초임계 열역학적 물성 예측을 위한 상태방정식 분석)

  • Jae Seung Kim;Jiwan, Seo;Kyu Hong Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.24-34
    • /
    • 2022
  • In order to predict the cooling performance of a regenerative cooling channel using hydrocarbon fuel operating in the supercritical region, it is essential to predict the thermodynamic properties. In this study, a comparative analysis was performed on two-parameter equations of state (SRK(Soave-Redlich-Kwong), PR(Peng-Robinson) equations of state) and three-parameter equations of state (RK-PR equations of state) to appropriately predict density and specific heat according to the critical compressibility factor of polymer hydrocarbons. Representatively, n-dodecane fuel with low critical compressibility factor and JP-10 fuel with high critical compressibility factor were selected, and an appropriate equation of state was presented when predicting the thermodynamic properties of the two fuels. Finally, the prediction results of density and specific heat were compared and verified with NIST REFPROP data.

On Stability of the Steady State, Thermodynamic Stabililty and Corresponding States in Rheology of Dense Simple Fluids$^\dag$

  • Ohr, Young-Gie;Eu, Byung-Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.204-210
    • /
    • 1986
  • It is shown that the linear stability coincides with the thermodynamic stability in the case of stress tensor evolution for simple dense fluids even if the constitutive (evolution) equation for the stress tensor is nolinear. The domain of coincidence can be defined in the space of parameters appearing in the constitutive equation and we find the domain is confined in an elliptical cone in a three-dimensional parameter space. The corresponding state theory in rheology of simple dense fluids is also further examined. The validity of the idea is strengthened by the examination.

Analysis of Steady State Error on Simple FLC (단순 FLC의 정상상태오차 해석)

  • Lee, Kyoung-Woong;Choi, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.897-901
    • /
    • 2011
  • This paper presents a TS (Takagi-Sugeno) type FLC (Fuzzy Logic Controller) with only 3 rules. The choice of parameters of FLC is very difficult job on design FLC controller. Therefore, the choice of appropriate linguistic variable is an important part of the design of fuzzy controller. However, since fuzzy controller is nonlinear, it is difficult to analyze mathematically the affection of the linguistic variable. So this choice is depend on the expert's experience and trial and error method. In the design of the system, we use a variety of response characteristics like stability, rising time, overshoot, settling time, steady-state error. In particular, it is important for a stable system design to predict the steady-state error because the system's steady-state response of the system is related to the overall quality. In this paper, we propose the method to choose the consequence linear equation's parameter of T-S type FLC in the view of steady-state error. The parameters of consequence linear equations of FLC are tuned according to the system error that is the input of FLC. The full equation of T-S type FLC is presented and using this equation, the relation between output and parameters can represented. As well as the FLC parameters of consequence linear equations affect the stability of the system, it also affects the steady-state error. In this study, The system according to the parameter of consequence linear equations of FLC predict the steady-state error and the method to remove the system's steady-state error is proposed using the prediction error value. The simulation is carried out to determine the usefulness of the proposed method.

Viscosity of Binary Gas Mixture from the Calculation by Using the Brake Theory of Viscosity (Brake 점성이론으로 계산한 이성분기체의 점성)

  • Kim, Won-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.3
    • /
    • pp.243-248
    • /
    • 2004
  • Brake theory of viscosity, which can sucessfully calculate the viscosity of real gases, dense gases and liquids, is extended to the binary gas mixture. Adjustable parameters are not involved, but the calculated results are good agreements with the experimental values at high pressure as well as low pressure. Corresponding state equation for viscosity can be obtained by using the Redlich-Kwong equation, so that we hope this equation may be useful for the supercritical fluid in engineering applications at high pressure around the critcal point.

Accuracy evaluation of 3D time-domain Green function in infinite depth

  • Zhang, Teng;Zhou, Bo;Li, Zhiqing;Han, Xiaoshuang;Gho, Wie Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.50-56
    • /
    • 2021
  • An accurate evaluation of three-dimensional (3D) Time-Domain Green Function (TDGF) in infinite water depth is essential for ship's hydrodynamic analysis. Various numerical algorithms based on the TDGF properties are considered, including the ascending series expansion at small time parameter, the asymptotic expansion at large time parameter and the Taylor series expansion combines with ordinary differential equation for the time domain analysis. An efficient method (referred as "Present Method") for a better accuracy evaluation of TDGF has been proposed. The numerical results generated from precise integration method and analytical solution of Shan et al. (2019) revealed that the "Present method" provides a better solution in the computational domain. The comparison of the heave hydrodynamic coefficients in solving the radiation problem of a hemisphere at zero speed between the "Present method" and the analytical solutions proposed by Hulme (1982) showed that the difference of result is small, less than 3%.

Parameter Estimation of Dynamic System Based on UKF (UKF 기반한 동역학 시스템 파라미터의 추정)

  • Seung, Ji-Hoon;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.772-778
    • /
    • 2012
  • In this paper, the states and the parameters in the dynamic system are simultaneously estimated by applying the UKF(Unscented Kalman Filter), which is widely used for estimating the state of non-linear systems. Estimating the parameter is very important in various fields, such as system control, modeling, analysis of performance, and prediction. Most of the dynamic systems which are dealt with in engineering have non-linearity as well as some noise. Therefore, the parameter estimation is difficult. This paper estimates the states and the parameters applying to the UKF, which is a non-linear filter and has strong noise. The augmented equation is used by including the addition of the parameter factors to the original state equation of the system. Moreover, it is simulated by applying to a 2-DOF(Degree of Freedom) dynamic system composed of the pendulum and the slide. The measurement noise of the dynamic equation is assumed to be a Gaussian distribution. As the simulation results show, the proposed parameter estimation performs better than the LSM(Least Square Method). Furthermore, the estimation errors and convergence time are within three percent and 0.1 second, respectively. Consequentially, the UKF is able to estimate the system states and the parameters for the system, despite having measurement data with noise.

Enhanced Equivalent Circuit Modeling for Li-ion Battery Using Recursive Parameter Correction

  • Ko, Sung-Tae;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1147-1155
    • /
    • 2018
  • This paper presents an improved method to determine the internal parameters for improving accuracy of a lithium ion battery equivalent circuit model. Conventional methods for the parameter estimation directly using the curve fitting results generate the phenomenon to be incorrect due to the influence of the internal capacitive impedance. To solve this phenomenon, simple correction procedure with transient state analysis is proposed and added to the parameter estimation method. Furthermore, conventional dynamic equation for correction is enhanced with advanced RC impedance dynamic equation so that the proposed modeling results describe the battery dynamic characteristics more exactly. The improved accuracy of the battery model by the proposed modeling method is verified by single cell experiments compared to the other type of models.

Simulation of Temperature Behavior in Hydrogen Tank During Refueling Using Cubic Equations of State (3차 상태방정식을 이용한 수소 충전 온도 거동 모사)

  • PARK, BYUNG HEUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.385-394
    • /
    • 2019
  • The analysis of temperature behavior of a hydrogen tank during refueling is of significance to clarify the safety of the compressed hydrogen storage in vehicles since the temperature at a tank rises with inflow of hydrogen. A mass balance and an energy balance were combined to obtain analytical model for temperature change during the hydrogen refueling. The equation was coupled to Peng-Robinson-Gasem (PRG) equation of state (EOS) for hydrogen. The PRG EOS was adopted after comparison with other four different cubic EOSs. A parameter of the model was determined to fit data from experiments of various inlet flow rates and temperatures. The temperature and pressure change with refueling time were obtained by the developed model. The calculation results revealed that the extent of precooling was more effective than the flow rate control.